找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning; Frédéric Jean Book 2014 The Author(s) 2014 Control theor

[復(fù)制鏈接]
查看: 29461|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:31:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning
編輯Frédéric Jean
視頻videohttp://file.papertrans.cn/238/237399/237399.mp4
概述Provides recent results and state-of-the-art in nonholonomic motion planning.Includes the description of a complete algorithm.It is a crash course on first-order theory in sub-Riemannian geometry.Incl
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning;  Frédéric Jean Book 2014 The Author(s) 2014 Control theor
描述Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.
出版日期Book 2014
關(guān)鍵詞Control theory; Motion planning; Nilpotent systems; Nonholonomic systems; Sub-Riemannian geometry
版次1
doihttps://doi.org/10.1007/978-3-319-08690-3
isbn_softcover978-3-319-08689-7
isbn_ebook978-3-319-08690-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2014
The information of publication is updating

書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning影響因子(影響力)




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning影響因子(影響力)學(xué)科排名




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning網(wǎng)絡(luò)公開度




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning被引頻次




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning被引頻次學(xué)科排名




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning年度引用




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning年度引用學(xué)科排名




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning讀者反饋




書目名稱Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:11:12 | 只看該作者
地板
發(fā)表于 2025-3-22 06:07:11 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:12 | 只看該作者
Vaginose, Vaginitis und Zervizitiswe will see in Sect.?. how the concepts introduced in the previous chapter allow to construct such an algorithm. We will also discuss two other methods in Sect.?. and give an overview of the literature in Sect.?..
6#
發(fā)表于 2025-3-22 16:17:06 | 只看該作者
Nonholonomic Motion Planning,we will see in Sect.?. how the concepts introduced in the previous chapter allow to construct such an algorithm. We will also discuss two other methods in Sect.?. and give an overview of the literature in Sect.?..
7#
發(fā)表于 2025-3-22 19:44:00 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:57 | 只看該作者
Book 2014at are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.
9#
發(fā)表于 2025-3-23 05:28:00 | 只看該作者
Frédéric JeanProvides recent results and state-of-the-art in nonholonomic motion planning.Includes the description of a complete algorithm.It is a crash course on first-order theory in sub-Riemannian geometry.Incl
10#
發(fā)表于 2025-3-23 08:33:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆回县| 新竹市| 南召县| 吉首市| 临高县| 伊春市| 九寨沟县| 武清区| 玉山县| 准格尔旗| 长岭县| 达拉特旗| 昭觉县| 扶余县| 登封市| 怀来县| 大新县| 区。| 宁德市| 赤峰市| 麻城市| 冕宁县| 丹巴县| 万载县| 柳林县| 丹东市| 三亚市| 荥阳市| 聊城市| 福泉市| 长兴县| 关岭| 三门县| 南陵县| 宣威市| 敦化市| 钟山县| 兴安县| 图木舒克市| 页游| 霍州市|