找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Higher–Dimensional PDEs; Flatness and Backste Thomas Meurer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Backstepping.Contro

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:16:29 | 只看該作者
32#
發(fā)表于 2025-3-27 03:33:51 | 只看該作者
33#
發(fā)表于 2025-3-27 09:00:18 | 只看該作者
Alexandria: Hochburg der Wissenschaftene applied by considering a suitable control volume, which is either fixed in space or moving within a fluid. With this, selected application examples and the related control problems are introduced and briefly discussed towards their analysis in subsequent chapters.
34#
發(fā)表于 2025-3-27 13:14:01 | 只看該作者
35#
發(fā)表于 2025-3-27 15:53:04 | 只看該作者
36#
發(fā)表于 2025-3-27 21:18:25 | 只看該作者
Alexandria: Hochburg der Wissenschaftenion–reaction systems (Chapters 2 and 3) or so–called biharmonic Petrowski systems (Chapter 4) defined on bounded higher–dimensional domains. This enables a rigorous formulation of the subsequently analyzed control problems.
37#
發(fā)表于 2025-3-28 00:50:48 | 只看該作者
https://doi.org/10.1007/978-3-658-44118-0 and feedback control design. The dynamic system properties are thereby determined based on the eigenvalue distribution and the respective set of eigenvectors. For infinite–dimensional systems governed by PDEs certain restrictions apply, which are in particular related to the possible existence of c
38#
發(fā)表于 2025-3-28 04:31:21 | 只看該作者
https://doi.org/10.1007/978-3-658-44216-3oblems. In the following a design technique is presented for boundary controlled scalar diffusion–convection–reaction systems with general spatially and time varying parameters defined on a 1 ≤ .–dimensional parallelepipedon. For this, it is assumed that the input relating state and gradient in a ge
39#
發(fā)表于 2025-3-28 07:01:42 | 只看該作者
40#
發(fā)表于 2025-3-28 10:40:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
从江县| 霍邱县| 永平县| 来宾市| 定安县| 璧山县| 咸宁市| 海安县| 玉屏| 海淀区| 巴彦淖尔市| 通山县| 宝坻区| 卫辉市| 吴江市| 保德县| 和政县| 桃江县| 商都县| 墨脱县| 扎赉特旗| 白朗县| 长海县| 临武县| 松潘县| 鄂托克旗| 阳朔县| 伽师县| 呼玛县| 海伦市| 奉化市| 汶川县| 勐海县| 娄烦县| 哈尔滨市| 县级市| 天等县| 华坪县| 满城县| 太和县| 安义县|