找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Degenerate and Singular Parabolic Equations; Carleman Estimates a Genni Fragnelli,Dimitri Mugnai Book 2021 The Author(s), under

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 12:26:33 | 只看該作者
,Warum ein Buch über Vertriebscontrolling?,We consider non degenerate singular parabolic problems, giving some existence or non existence results, which depend on the value of the parameter of the singular term. Null controllability results are presented, as well.
12#
發(fā)表于 2025-3-23 15:33:03 | 只看該作者
Jonas Reinhardt,Agostino MazziottaWe consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
13#
發(fā)表于 2025-3-23 18:32:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:22 | 只看該作者
The Non Singular Case: ,We show Carleman estimates for parabolic problems in divergence or non divergence form with degeneracy at the boundary or in the interior of the space domain. By them we obtain observability inequalities, proving that the problems are null controllable.
16#
發(fā)表于 2025-3-24 09:28:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:54 | 只看該作者
The Case of a Boundary Degenerate/Singular Parabolic Equation,We consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
18#
發(fā)表于 2025-3-24 16:27:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:12:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:09 | 只看該作者
Book 2021dents and senior researchers with a useful text, where they can find the desired statements and the related bibliography.? For these reasons, the authors will not give all the detailed proofs of the given theorems, but just some of them, in order to show the underlying strategy in this area..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普格县| 嵊州市| 额尔古纳市| 洛南县| 娄烦县| 香港 | 化州市| 柘荣县| 会昌县| 广宁县| 津南区| 白银市| 嵩明县| 全南县| 郯城县| 阜宁县| 合阳县| 廉江市| 凉城县| 千阳县| 东海县| 南宁市| 屯留县| 韶山市| 乌拉特中旗| 东明县| 称多县| 郓城县| 招远市| 积石山| 抚顺县| 扶沟县| 巴塘县| 岱山县| 保靖县| 房产| 东港市| 颍上县| 临武县| 扎囊县| 宽城|