找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Degenerate and Singular Parabolic Equations; Carleman Estimates a Genni Fragnelli,Dimitri Mugnai Book 2021 The Author(s), under

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 12:26:33 | 只看該作者
,Warum ein Buch über Vertriebscontrolling?,We consider non degenerate singular parabolic problems, giving some existence or non existence results, which depend on the value of the parameter of the singular term. Null controllability results are presented, as well.
12#
發(fā)表于 2025-3-23 15:33:03 | 只看該作者
Jonas Reinhardt,Agostino MazziottaWe consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
13#
發(fā)表于 2025-3-23 18:32:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:22 | 只看該作者
The Non Singular Case: ,We show Carleman estimates for parabolic problems in divergence or non divergence form with degeneracy at the boundary or in the interior of the space domain. By them we obtain observability inequalities, proving that the problems are null controllable.
16#
發(fā)表于 2025-3-24 09:28:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:54 | 只看該作者
The Case of a Boundary Degenerate/Singular Parabolic Equation,We consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
18#
發(fā)表于 2025-3-24 16:27:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:12:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:09 | 只看該作者
Book 2021dents and senior researchers with a useful text, where they can find the desired statements and the related bibliography.? For these reasons, the authors will not give all the detailed proofs of the given theorems, but just some of them, in order to show the underlying strategy in this area..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南城县| 观塘区| 壶关县| 新郑市| 丹凤县| 安远县| 原平市| 合阳县| 大埔区| 宜章县| 天峨县| 汝城县| 龙门县| 汉阴县| 闵行区| 陆良县| 津南区| 霍州市| 周至县| 华阴市| 广饶县| 沁源县| 上高县| 红河县| 鱼台县| 弋阳县| 略阳县| 内乡县| 杨浦区| 新蔡县| 新竹县| 龙游县| 平江县| 阿坝| 青田县| 岳阳县| 宜良县| 阳高县| 阳山县| 萨嘎县| 明星|