找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control Theory from the Geometric Viewpoint; Andrei A. Agrachev,Yuri L. Sachkov Book 2004 Springer-Verlag Berlin Heidelberg 2004 Lie brack

[復(fù)制鏈接]
樓主: 矜持
21#
發(fā)表于 2025-3-25 05:43:49 | 只看該作者
22#
發(fā)表于 2025-3-25 11:27:14 | 只看該作者
https://doi.org/10.1007/978-3-658-06809-7A well-known theorem states that if a level surface of a Hamiltonian is convex, then it contains a periodic trajectory of the Hamiltonian system [142], [147]. In this chapter we prove a more general statement as an application of optimal control theory for linear systems.
23#
發(fā)表于 2025-3-25 14:57:29 | 只看該作者
,Venezia Verde – Grünes Venedig?,In this chapter we study the following optimal control problem:.where . is a compact convex polytope in ?., and A and . are constant matrices of order . × . and . × . respectively. Such problem is called ..
24#
發(fā)表于 2025-3-25 16:06:14 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:15 | 只看該作者
26#
發(fā)表于 2025-3-26 01:52:30 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:26 | 只看該作者
28#
發(fā)表于 2025-3-26 10:01:39 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:47 | 只看該作者
The Orbit Theorem and its Applications,Let . ? Vec . be any set of smooth vector fields. In order to simplify notation, we assume that all fields from . are complete. Actually, all further definitions and results have clear generalizations to the case of noncomplete fields; we leave them to the reader.
30#
發(fā)表于 2025-3-26 17:15:17 | 只看該作者
Rotations of the Rigid Body,In this chapter we consider rotations of a . around a fixed point. That is, we study motions of a body in the three-dimensional space such that:.We consider both free motions (in the absence of external forces) and controlled motions (when external forces are applied in order to bring the body to a desired state).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
多伦县| 福海县| 遵化市| 新安县| 陆良县| 神木县| 潼关县| 贵州省| 阿坝县| 汝州市| 申扎县| 漠河县| 清水河县| 呼图壁县| 长葛市| 吴忠市| 砚山县| 青田县| 武山县| 慈利县| 农安县| 大冶市| 伽师县| 阜城县| 连城县| 灵璧县| 天峨县| 镇雄县| 观塘区| 靖安县| 湖口县| 大邑县| 中卫市| 甘肃省| 叙永县| 来宾市| 濮阳县| 镇平县| 青州市| 万载县| 乌兰浩特市|