找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to a General Asymptotic Statistical Theory; J. Pfanzagl Book 1982 Springer-Verlag, New York Inc. 1982 Asymptotische Wirksamk

[復(fù)制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 10:58:16 | 只看該作者
Verletzungen der Schlagadern am Hirngrund,Let (x .) be a measurable space, and β the basic family of p-measures Q | A. Let β. ? β be a subfamily, interpreted as a . which is to be tested against alternatives from β — β. .
12#
發(fā)表于 2025-3-23 14:18:00 | 只看該作者
13#
發(fā)表于 2025-3-23 21:05:50 | 只看該作者
V. A. Tverdislov,E. N. GerasimovaLet β be a family of p-measures, and κ: β → IR a differentiable functional. Let κ(·,β the canonical gradient of κ at P.
14#
發(fā)表于 2025-3-24 01:58:49 | 只看該作者
Funktionen zur Modellierung von Systemen,Let β. be the family of all distributions on B which admit a posi- tive and symmetric Lebesgue density, and β ? β. a full family of distributions with positive Lebesgue density. Let p denote the Lebesgue density of P, ?(x,P):= log p(x), and ?’(x,P):= (d/dx)?(x,P).
15#
發(fā)表于 2025-3-24 04:38:48 | 只看該作者
Vasodilators in Chronic Heart FailureFor i ∈ {1,. . .,m} let (x., .) be measurable spaces. In the following, sums Σ and products ×,Π over i always run from 1 to m. Let β be a family of p-measures on ×., and κ: β → IR a functional. Our problem is to estimate κ(P) under various conditions on β.
16#
發(fā)表于 2025-3-24 10:32:33 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:05 | 只看該作者
Introduction,This book intends to provide a basis for a unified asymptotic statistical theory, comprising parametric as well as non-parametric models.
19#
發(fā)表于 2025-3-24 22:12:15 | 只看該作者
The Local Structure of Families of Probability Measures,In this section we develop the concept of a tangent cone which seems appropriate for describing the . of a family of p-measures. Our purpose is to seize upon those local properties which are essential for the asymptotic performance of statistical procedures .
20#
發(fā)表于 2025-3-25 00:32:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平和县| 柏乡县| 西盟| 康平县| 兴城市| 三门县| 怀远县| 上虞市| 明星| 衡东县| 皮山县| 郧西县| 亚东县| 南靖县| 兰溪市| 托克托县| 韩城市| 福建省| 吴川市| 健康| 治县。| 石楼县| 兴仁县| 左权县| 余干县| 张家口市| 安康市| 东乡县| 铜梁县| 乌苏市| 红桥区| 上高县| 忻城县| 满城县| 安义县| 沂源县| 丘北县| 泰顺县| 屏南县| 洪江市| 万宁市|