找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: Maudlin
11#
發(fā)表于 2025-3-23 13:16:08 | 只看該作者
W. Creutzfeldt,C. Creutzfeldt,R. Arnold as follows. Suppose X??. is an analytic variety of pure dimension p and q ≥ n-p. Let G(q,n) denote the Grassmannian of q-dimensional linear subspaces of ?.. We measure the “growth” of a variety Y of dimension p by computing vol.(Y?B.(r)) where vol. denotes the 2p-Hausdorff measure. Stoll’s result r
12#
發(fā)表于 2025-3-23 16:35:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:20:27 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:42 | 只看該作者
William Strieder,Rutherford Arisfits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about ? as is possible. In particular it is often useful to study the orbit structure of real subgroups of ?. Such orbits are usually not complex sub-manifolds of X.
15#
發(fā)表于 2025-3-24 03:15:29 | 只看該作者
Vorlesungen über die Theorie der PolyederThe heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
16#
發(fā)表于 2025-3-24 08:21:42 | 只看該作者
Vorlesungen über die neuere GeometrieOne of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
17#
發(fā)表于 2025-3-24 11:39:27 | 只看該作者
,Konforme Abbildung von Minimalfl?chen,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
18#
發(fā)表于 2025-3-24 14:52:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:25:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲城县| 镇赉县| 曲松县| 通化市| 乡宁县| 碌曲县| 汝州市| 平凉市| 孝昌县| 泽州县| 宝鸡市| 盐亭县| 合肥市| 东海县| 崇文区| 尉犁县| 延庆县| 正宁县| 曲水县| 靖西县| 清苑县| 南康市| 盐城市| 金门县| 克什克腾旗| 沾益县| 宁波市| 花垣县| 宝坻区| 梁平县| 华安县| 鄂伦春自治旗| 宜章县| 连平县| 大荔县| 元朗区| 扎囊县| 田阳县| 灌云县| 武川县| 封开县|