找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
21#
發(fā)表于 2025-3-25 05:51:26 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
22#
發(fā)表于 2025-3-25 11:27:24 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
23#
發(fā)表于 2025-3-25 14:12:18 | 只看該作者
24#
發(fā)表于 2025-3-25 17:12:07 | 只看該作者
Symmetry of Solutions of a Semilinear Elliptic Problem in an Annulus,r. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
25#
發(fā)表于 2025-3-25 20:21:33 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:16 | 只看該作者
On a Class of Critical Elliptic Equations of Caffarelli-Kohn-Nirenberg Type,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
27#
發(fā)表于 2025-3-26 05:11:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:44 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇川县| 平罗县| 达日县| 昔阳县| 临汾市| 儋州市| 孝义市| 连山| 白河县| 临桂县| 二连浩特市| 浦北县| 成安县| 吉首市| 海原县| 东阳市| 秦皇岛市| 常宁市| 通江县| 花莲县| 于都县| 侯马市| 阿合奇县| 老河口市| 德保县| 淮滨县| 谷城县| 连州市| 屏山县| 岳普湖县| 江西省| 遂溪县| 九江县| 读书| 图们市| 钟山县| 梁山县| 河池市| 南充市| 嘉鱼县| 威海市|