找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuum Mechanics with Eulerian Formulations of Constitutive Equations; M.B. Rubin Book 2021 Springer Nature Switzerland AG 2021 Continu

[復制鏈接]
樓主: angiotensin-I
11#
發(fā)表于 2025-3-23 12:33:53 | 只看該作者
Charles Consel,Lucile Dupuy,Hélène Sauzéonlations for specific tensors. It is shown that the local forms of the balance laws can be derived by using invariance under SRBM of the rate of material dissipation and these transformation relations. Also, linearization of the kinematic quantities and balance laws are discussed.
12#
發(fā)表于 2025-3-23 15:58:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:56 | 只看該作者
0925-0042 ok focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive
14#
發(fā)表于 2025-3-24 00:52:00 | 只看該作者
Lucas Paletta,Martin Pszeida,Mariella Panagl tensor calculus, attention is limited to tensors expressed relative to fixed rectangular Cartesian base vectors. (Some of the content in this chapter has been adapted from Rubin (Cosserat theories: shells, rods and points. Springer Science & Business Media, Berlin, 2000) with permission.)
15#
發(fā)表于 2025-3-24 02:50:17 | 只看該作者
Jay Kalra,Nancy J. Lightner,Redha Taiarstructural vectors .. The influence of kinematic constraints on constitutive equations is discussed and specific nonlinear constitutive equations are presented for a number of materials including: elastic solids, viscous fluids and elastic–inelastic materials.
16#
發(fā)表于 2025-3-24 07:50:50 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:51 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 01:21:32 | 只看該作者
0925-0042 resented for: hyperelastic materials; elastic–inelastic materials; thermoelastic–inelastic materials with application to shock waves; thermoelastic–inelastic porous materials; and thermoelastic–inelastic growing biological tissues.978-3-030-57778-0978-3-030-57776-6Series ISSN 0925-0042 Series E-ISSN 2214-7764
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
固始县| 东光县| 临城县| 孟村| 涞源县| 金昌市| 五家渠市| 察隅县| 嘉兴市| 利津县| 禄劝| 文登市| 丽江市| 丰镇市| 北海市| 双江| 河曲县| 来宾市| 长沙县| 海口市| 福泉市| 宁城县| 大渡口区| 卓资县| 宿松县| 蒲江县| 平远县| 息烽县| 当雄县| 高雄市| 南华县| 博乐市| 张北县| 紫阳县| 普安县| 满洲里市| 通州区| 体育| 双辽市| 石家庄市| 海淀区|