找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 12:37:10 | 只看該作者
Continuous-Time Markov Chains978-1-4612-3038-0Series ISSN 0172-7397 Series E-ISSN 2197-568X
12#
發(fā)表于 2025-3-23 16:45:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:30:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:36 | 只看該作者
https://doi.org/10.1007/978-3-322-94806-9called a continuous-time parameter Markov chain if for any finite set . of “times,” and corresponding set . of states in . such that ., we have . Equation (1.1) is called the Markov property. If for all ., . such that . and all .,. ε . the conditional probability . appearing on the right-hand side o
15#
發(fā)表于 2025-3-24 05:02:23 | 只看該作者
Produktion und Unternehmungsformen such a stochastic process is uniquely determined by the one-step transition matrix . whose .,.th component is ., and an initial distribution vector ., whose .th component is .. Every probability involving the random variables of this chain can be determined from the finite-dimensional distributions
16#
發(fā)表于 2025-3-24 09:35:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:05 | 只看該作者
Renate Neub?umer,Brigitte Hewelpect convergence of .(.) to the ergodic limits π.? We shall study two special types of ergodicity, the so-called strong ergodicity and exponential ergodicity. Of course, our main interest is always to characterize these properties in terms of the . matrix.
18#
發(fā)表于 2025-3-24 17:37:12 | 只看該作者
,Konstruktive Ger?uschminderungsma?nahmen,ent the birth and death .-matrix of (3.2.1) given by.,where . is a set of birth-death parameters. Note again that . is conservative if and only if . = 0, and that if .. > 0, we are allowing the process to jump from state 0 directly to an absorbing state which, given the context here, is most conveni
19#
發(fā)表于 2025-3-24 21:01:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云浮市| 高淳县| 界首市| 梁平县| 涡阳县| 富阳市| 江门市| 枣强县| 鲜城| 陇川县| 新余市| 长海县| 尼玛县| 内乡县| 射洪县| 西乌珠穆沁旗| 凉山| 法库县| 武冈市| 甘洛县| 大安市| 灌阳县| 鲁甸县| 城口县| 桂阳县| 同心县| 罗源县| 剑河县| 泽州县| 德兴市| 治县。| 河池市| 黄平县| 兴文县| 曲水县| 衡阳市| 娄底市| 商城县| 凤凰县| 大同市| 偏关县|