找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous and Distributed Systems II; Theory and Applicati Viktor A. Sadovnichiy,Mikhail Z. Zgurovsky Book 2015 Springer International Pub

[復(fù)制鏈接]
樓主: 日月等
41#
發(fā)表于 2025-3-28 16:40:49 | 只看該作者
A Generalized Cahn-Hilliard Equation with Logarithmic PotentialsOur aim in this paper is to study the well-posedness for a generalized Cahn-Hilliard equation with a proliferation term and singular potentials. We also prove the existence of the global attractor.
42#
發(fā)表于 2025-3-28 21:36:50 | 只看該作者
43#
發(fā)表于 2025-3-29 00:46:05 | 只看該作者
44#
發(fā)表于 2025-3-29 06:30:21 | 只看該作者
https://doi.org/10.1007/978-3-322-90847-6. Problems of stability with respect to projection errors and stability with respect to system perturbations are studied. The presented results are the generalization of theorems on absolute stability of orthorecursive expansions in redundant systems of Hilbert space elements.
45#
發(fā)表于 2025-3-29 10:42:35 | 只看該作者
46#
發(fā)表于 2025-3-29 12:00:45 | 只看該作者
47#
發(fā)表于 2025-3-29 17:09:43 | 只看該作者
48#
發(fā)表于 2025-3-29 23:08:10 | 只看該作者
https://doi.org/10.1007/978-3-322-90874-2systems, that is, with constant parameters, inputs, and outputs. In many realistic situations these quantities can vary in time, either deterministically (e.g., periodically) or randomly. They are then nonautonomous dynamical systems for which the usual concepts of autonomous systems do not apply or
49#
發(fā)表于 2025-3-30 00:57:57 | 只看該作者
Experiment: Virtueller Kautschukmarkt,r of stochastic lattice differential equations, by using the concept of global random pullback attractor in the framework of random dynamical systems. General results on the existence of global compact random attractors are first provided for general random dynamical systems in weighted spaces of in
50#
發(fā)表于 2025-3-30 06:32:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 鲜城| 盐边县| 井研县| 罗甸县| 长岭县| 黑山县| 广安市| 孝感市| 莱阳市| 米脂县| 台东市| 隆德县| 沂南县| 宜兰市| 临清市| 德钦县| 东海县| 新沂市| 丹江口市| 营口市| 沐川县| 桂平市| 昌都县| 台湾省| 婺源县| 丹棱县| 余庆县| 东台市| 衡东县| 贵南县| 曲松县| 亳州市| 贡山| 庄浪县| 内黄县| 福建省| 富裕县| 博湖县| 沁源县| 辽阳县|