找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Continuous Time Modeling in the Behavioral and Related Sciences; Kees van Montfort,Johan H. L. Oud,Manuel C. Voelkl Book 2018 Springer Int

[復(fù)制鏈接]
樓主: calcification
51#
發(fā)表于 2025-3-30 11:18:24 | 只看該作者
Stochastic Differential Equation Models with Time-Varying Parameters,uman dynamic processes with self-organizing features comprise subprocesses that unfold across multiple time scales. Incorporating time-varying parameters (TVPs) into a dynamic model of choice provides one way of representing self-organization as well as multi-time scale processes. Extant application
52#
發(fā)表于 2025-3-30 16:26:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:25:58 | 只看該作者
Recursive Partitioning in Continuous Time Analysis,rrelations cannot be made. Machine learning-inspired approaches have been gaining momentum in modeling such “big” data because they offer a systematic approach to searching for potential interrelationships among variables. In practice, researchers may often start with a small model strongly guided b
54#
發(fā)表于 2025-3-30 22:03:31 | 只看該作者
Continuous versus Discrete Time Modeling in Growth and Business Cycle Theory,he basic Solow and Ramsey models of growth and the business cycle toward the issue of equilibrium indeterminacy and endogenous cycles. In this paper, we introduce some of those relevant issues in economic dynamics. First, we describe a baseline continuous versus discrete time modeling setting releva
55#
發(fā)表于 2025-3-31 04:32:06 | 只看該作者
Continuous Time State Space Modelling with an Application to High-Frequency Road Traffic Data,e models is that time gaps between consecutive observations in a time series are allowed to vary throughout the process. We discuss some essential details of the continuous time state space methodology and review the similarities and the differences between the continuous time and discrete time appr
56#
發(fā)表于 2025-3-31 06:19:33 | 只看該作者
57#
發(fā)表于 2025-3-31 10:57:41 | 只看該作者
Implementation of Multivariate Continuous-Time ARMA Models,utational implementation of a stationary normal multivariate CARMA model is illustrated. A review of a parametric setup is shown. Data are assumed to be observed at irregular non-synchronous discrete time points. The computational approach for calculating the likelihood is based on a state-space for
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石河子市| 长治市| 扎囊县| 大安市| 夏津县| 登封市| 禄劝| 古丈县| 临澧县| 什邡市| 肥城市| 泰和县| 汨罗市| 吴旗县| 名山县| 康定县| 宣恩县| 芦溪县| 九龙坡区| 垫江县| 饶河县| 桓仁| 鲁甸县| 张北县| 武定县| 南丰县| 永年县| 北海市| 岱山县| 金沙县| 肃宁县| 樟树市| 宜章县| 新干县| 永福县| 昭平县| 水城县| 冀州市| 佛坪县| 承德市| 资兴市|