找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous Optimization; Current Trends and M Vaithilingam Jeyakumar,Alexander Rubinov Book 2005 Springer-Verlag US 2005 Newton‘s method.an

[復(fù)制鏈接]
查看: 34444|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:12:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Continuous Optimization
副標(biāo)題Current Trends and M
編輯Vaithilingam Jeyakumar,Alexander Rubinov
視頻videohttp://file.papertrans.cn/238/237014/237014.mp4
概述A research contributed volume presenting substantive survey articles in a number of important topic areas of continuous optimization.Contains timely research articles in optimization theory, and numer
叢書名稱Applied Optimization
圖書封面Titlebook: Continuous Optimization; Current Trends and M Vaithilingam Jeyakumar,Alexander Rubinov Book 2005 Springer-Verlag US 2005 Newton‘s method.an
描述Continuous optimization is the study of problems in which we wish to opti- mize (either maximize or minimize) a continuous function (usually of several variables) often subject to a collection of restrictions on these variables. It has its foundation in the development of calculus by Newton and Leibniz in the 17*^ century. Nowadys, continuous optimization problems are widespread in the mathematical modelling of real world systems for a very broad range of applications. Solution methods for large multivariable constrained continuous optimiza- tion problems using computers began with the work of Dantzig in the late 1940s on the simplex method for linear programming problems. Recent re- search in continuous optimization has produced a variety of theoretical devel- opments, solution methods and new areas of applications. It is impossible to give a full account of the current trends and modern applications of contin- uous optimization. It is our intention to present a number of topics in order to show the spectrum of current research activities and the development of numerical methods and applications.
出版日期Book 2005
關(guān)鍵詞Newton‘s method; analysis; linear optimization; model; modeling; nonlinear optimization; numerical methods
版次1
doihttps://doi.org/10.1007/b137941
isbn_softcover978-1-4419-3894-7
isbn_ebook978-0-387-26771-5Series ISSN 1384-6485
issn_series 1384-6485
copyrightSpringer-Verlag US 2005
The information of publication is updating

書目名稱Continuous Optimization影響因子(影響力)




書目名稱Continuous Optimization影響因子(影響力)學(xué)科排名




書目名稱Continuous Optimization網(wǎng)絡(luò)公開度




書目名稱Continuous Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Continuous Optimization被引頻次




書目名稱Continuous Optimization被引頻次學(xué)科排名




書目名稱Continuous Optimization年度引用




書目名稱Continuous Optimization年度引用學(xué)科排名




書目名稱Continuous Optimization讀者反饋




書目名稱Continuous Optimization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:36 | 只看該作者
Some Theoretical Aspects of Newton’s Method for Constrained Best Interpolationx best interpolation problem. Issues addressed include theoretical reduction of the problem to a system of nonsmooth equations, nonsmooth analysis of those equations and development of Newton’s method, convergence analysis and globalization. We frequently use the convex best interpolation to illustr
板凳
發(fā)表于 2025-3-22 00:42:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:19:43 | 只看該作者
On Complexity of Stochastic Programming Problemsing problems with recourse can be solved with a reasonable accuracy by using Monte Carlo sampling techniques, while multistage stochastic programs, in general, are intractable. We also discuss complexity of chance constrained problems and multistage stochastic programs with linear decision rules.
5#
發(fā)表于 2025-3-22 11:32:11 | 只看該作者
6#
發(fā)表于 2025-3-22 12:58:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:59 | 只看該作者
A Review of Applications of the Cutting Angle Methodsds have recently emerged as a tool for global optimization of families of abstract convex functions. Their applicability have been subsequently extended to other problems, such as scattered data interpolation. This paper reviews three different applications of cutting angle methods, namely global op
8#
發(fā)表于 2025-3-22 23:40:56 | 只看該作者
A Numerical Method for Concave Programming Problemsblems have a diverse range of direct and indirect applications. Moreover, concave minimization problems are well known to be NP-hard. In this paper, we present three algorithms which are similar to each other for concave minimization problems. In each iteration of the algorithms, linear programming
9#
發(fā)表于 2025-3-23 02:20:42 | 只看該作者
Convexification and Monotone Optimizationence of multiple local optimal solutions, finding a global optimal solution of such a problem is computationally difficult. In this survey paper, we summarize global solution methods for the monotone optimization problem. In particular, we propose a unified framework for the recent progress on conve
10#
發(fā)表于 2025-3-23 09:02:36 | 只看該作者
Generalized Lagrange Multipliers for Nonconvex Directionally Differentiable Programsnditions of Kuhn-Tucker type based on the directional derivatives are proved. Here the Lagrange multipliers generally depend on the directions. It is shown that for various concrete classes of problems (including classes convex problems, locally Lipschitz problems, composite nonsmooth problems), gen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 03:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余干县| 南京市| 屯留县| 得荣县| 唐海县| 新宾| 永靖县| 怀化市| 平乡县| 新竹市| 喜德县| 涞源县| 平顺县| 蒲城县| 安吉县| 射洪县| 长春市| 浦北县| 新乡县| 泸州市| 抚宁县| 洪洞县| 安顺市| 连山| 启东市| 巫山县| 哈密市| 徐州市| 德格县| 湟源县| 彰化市| 怀安县| 郎溪县| 神农架林区| 海丰县| 通州区| 河曲县| 松溪县| 横峰县| 清原| 刚察县|