找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Context-Aware Machine Learning and Mobile Data Analytics; Automated Rule-based Iqbal Sarker,Alan Colman,Paul Watters Book 2021 The Editor(s

[復(fù)制鏈接]
樓主: 可樂
21#
發(fā)表于 2025-3-25 03:39:18 | 只看該作者
Iqbal Sarker,Alan Colman,Paul WattersPresents a comprehensive study and highlights the usefulness of the concept of context-aware machine learning.Introduces an automated rule-based machine learning framework to effectively analyze and d
22#
發(fā)表于 2025-3-25 09:37:31 | 只看該作者
http://image.papertrans.cn/c/image/236886.jpg
23#
發(fā)表于 2025-3-25 11:44:34 | 只看該作者
24#
發(fā)表于 2025-3-25 16:14:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:05:39 | 只看該作者
A Literature Review on Context-Aware Machine Learning and Mobile Data Analyticscontext-aware machine learning framework presented in the earlier chapter. It covers contextual information in mobile phone data, context discretization, and time-series modeling techniques, rule discovery techniques including association rules and classification rules, dynamic rule updating and man
26#
發(fā)表于 2025-3-26 04:09:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:06 | 只看該作者
Discretization of Time-Series Behavioral Data and Rule Generation based on Temporal Contextf the users, which is used as the basis of generating rules based on temporal context. Although a static segmentation approach is straightforward to comprehend and can be beneficial for analyzing population behavior by comparing across individuals, the generated static segments do not always map to
28#
發(fā)表于 2025-3-26 11:34:07 | 只看該作者
Discovering User Behavioral Rules Based on Multi-Dimensional Contextsavioral patterns. In this chapter, we focus on discovering behavioral rules of individual mobile phone users by taking into account multi-dimensional contexts—for example temporal, spatial, or social context. Association rule mining is the most prominent rule-based machine learning method for genera
29#
發(fā)表于 2025-3-26 13:31:07 | 只看該作者
Recency-Based Updating and Dynamic Management of Contextual Rulesntexts (temporal, spatial, and social context) utilizing their phone log data. However, user behavior is not static, may change over time in the real world. The discovered rules from mobile phone data, therefore, need to be dynamically updated and managed according to the recent behavioral patterns
30#
發(fā)表于 2025-3-26 19:05:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙洋县| 大庆市| 慈利县| 淮南市| 西安市| 平山县| 米易县| 崇州市| 宣化县| 广宗县| 蒙城县| 东源县| 巴塘县| 西乌珠穆沁旗| 孝昌县| 陇南市| 自治县| 赤水市| 康马县| 陆丰市| 桃源县| 梅河口市| 施甸县| 澜沧| 甘孜县| 天祝| 安吉县| 成安县| 隆林| 岚皋县| 尉犁县| 盐山县| 乃东县| 东兴市| 平湖市| 浦城县| 焉耆| 莒南县| 锡林郭勒盟| 宣化县| 岳阳县|