找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan; Josef Dick,Frances Y. Kuo,Henryk Wo?niakowski Bo

[復制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:55:22 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:17:03 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:37 | 只看該作者
35#
發(fā)表于 2025-3-27 16:11:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:17:56 | 只看該作者
,Einführung in den Problemkreis,We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
38#
發(fā)表于 2025-3-28 02:38:25 | 只看該作者
Gerd Steierwald,Jürgen GoldbachWe produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in .. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.
39#
發(fā)表于 2025-3-28 06:40:18 | 只看該作者
,Optimale überwachung in der Praxis,Using recent results on subperiodic trigonometric Gaussian quadrature and the construction of subperiodic trigonometric orthogonal bases, we extend Sloan’s notion of hyperinterpolation to trigonometric spaces on subintervals of the period. The result is relevant, for example, to function approximation on spherical or toroidal rectangles.
40#
發(fā)表于 2025-3-28 11:02:47 | 只看該作者
There Is No Strongly Regular Graph with Parameters (460, 153, 32, 60),We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵川县| 连州市| 湖南省| 南部县| 顺昌县| 独山县| 新和县| 灯塔市| 会理县| 奇台县| 达尔| 拉萨市| 天全县| 重庆市| 黑山县| 台中县| 武鸣县| 霞浦县| 和田县| 桐柏县| 武山县| 安化县| 怀安县| 贵溪市| 巴塘县| 洪雅县| 望谟县| 武穴市| 贡嘎县| 安仁县| 休宁县| 上蔡县| 汕尾市| 云龙县| 榆中县| 龙南县| 东至县| 崇义县| 阜新| 绍兴县| 清河县|