找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact and Symplectic Topology; Frédéric Bourgeois,Vincent Colin,András Stipsicz Book 2014 Copyright jointly owned by the János Bolyai Ma

[復(fù)制鏈接]
樓主: Taft
31#
發(fā)表于 2025-3-26 23:23:59 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.
32#
發(fā)表于 2025-3-27 04:26:40 | 只看該作者
Contact Invariants in Floer Homology,e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.
33#
發(fā)表于 2025-3-27 05:22:09 | 只看該作者
34#
發(fā)表于 2025-3-27 10:46:52 | 只看該作者
,A Beginner’s Introduction to Fukaya Categories,essary technical detail), and briefly discuss algebraic concepts such as exact triangles and generators. Finally, we mention wrapped Fukaya categories and outline a few applications to symplectic topology, mirror symmetry and low-dimensional topology.
35#
發(fā)表于 2025-3-27 13:35:54 | 只看該作者
36#
發(fā)表于 2025-3-27 18:03:03 | 只看該作者
37#
發(fā)表于 2025-3-28 01:59:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:12 | 只看該作者
Lecture Notes on Embedded Contact Homology,ich in the summer of 2012, a series of accompanying blog postings at ., and related lectures at UC Berkeley in Fall 2012. There is already a brief introduction to ECH in the article of M. Hutchings (in Proceedings of the 2010 ICM, vol. II, pp. 1022–1041, .), but the present notes give much more background and detail.
39#
發(fā)表于 2025-3-28 07:59:57 | 只看該作者
40#
發(fā)表于 2025-3-28 10:43:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临猗县| 富宁县| 全南县| 长兴县| 周宁县| 双峰县| 司法| 益阳市| 游戏| 五莲县| 金溪县| 施秉县| 介休市| 合江县| 定襄县| 静海县| 庆云县| 溧阳市| 乐昌市| 东方市| 渭南市| 武冈市| 泸州市| 南投市| 大埔区| 天水市| 基隆市| 龙州县| 甘泉县| 广汉市| 界首市| 滨海县| 通化县| 平邑县| 桐乡市| 饶河县| 邳州市| 固阳县| 江阴市| 大同市| 准格尔旗|