找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Mechanics of Articular Cartilage Layers; Asymptotic Models Ivan Argatov,Gennady Mishuris Book 2015 Springer International Publishin

[復(fù)制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 22:47:49 | 只看該作者
Remediating Sites of Resource Extractionrk of the leading-order asymptotic model. Finally, the deformation problem for a transversely isotropic elastic layer bonded to a rigid substrate, and coated with a very thin elastic layer made of another transversely isotropic material is analyzed in Sect.?..
32#
發(fā)表于 2025-3-27 03:12:35 | 只看該作者
33#
發(fā)表于 2025-3-27 08:21:53 | 只看該作者
34#
發(fā)表于 2025-3-27 10:31:27 | 只看該作者
Remediating Sites of Resource Extractionermined analytically based on the exact solution for elliptical contact between thin cartilage layers generally modeled as viscoelastic incompressible layers. In Sect.?., the equivalent Hunt–Crossley model for articular contact is developed in the framework of the short-time contact model for thin bonded biphasic layers.
35#
發(fā)表于 2025-3-27 15:51:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:16:41 | 只看該作者
Frictionless Contact of Thin Viscoelastic Layers,odels for the viscoelastic case, based on the correspondence principle. In Sect.?., we consider the main features of the analytical technique for solving unilateral contact problems for a viscoelastic foundation. The axisymmetric contact problem for a thin bonded incompressible viscoelastic layer is
37#
發(fā)表于 2025-3-28 00:38:38 | 只看該作者
Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer,. In Sects.?. and ., we consider the linear biphasic models of confined and unconfined compression, respectively, for the biphasic stress relaxation and the biphasic creep tests. Finally, in Sect.?. we outline the biphasic poroviscoelastic model, which accounts for the inherent viscoelasticity of th
38#
發(fā)表于 2025-3-28 04:27:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:19:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
儋州市| 涞水县| 辉县市| 泊头市| 乌拉特后旗| 广南县| 绥德县| 桃源县| 乐东| 扎囊县| 确山县| 河源市| 通化市| 舟曲县| 安义县| 嘉鱼县| 澎湖县| 太康县| 吉木乃县| 个旧市| 娱乐| 徐闻县| 桦甸市| 玉树县| 阳新县| 上林县| 镇康县| 临城县| 淄博市| 美姑县| 永平县| 广河县| 华宁县| 米林县| 和静县| 和林格尔县| 年辖:市辖区| 容城县| 隆德县| 鹤岗市| 盱眙县|