找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Denial
21#
發(fā)表于 2025-3-25 04:04:34 | 只看該作者
22#
發(fā)表于 2025-3-25 10:25:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:31 | 只看該作者
,Curvature Inequalities for?Slant Submanifolds in?Pointwise Kenmotsu Space Forms,In this survey paper, we provide an overview of the geometry of slant submanifolds in pointwise Kenmotsu space forms, with a focus on the curvature properties that set basic relationships between the main intrinsic and extrinsic invariants of submanifolds.
24#
發(fā)表于 2025-3-25 18:48:40 | 只看該作者
Some Basic Inequalities on Slant Submanifolds in Space Forms,In Differential Geometry, K?hler and Sasaki manifolds and their submanifolds are probably the most studied geometric objects, because of their interesting properties. In particular, the behavior of submanifolds in complex space forms and Sasakian space forms was investigated by many geometers.
25#
發(fā)表于 2025-3-25 21:40:36 | 只看該作者
The Slant Submanifolds in the Setting of Metric ,-Manifolds,In this survey paper, we present a brief summary concerning the slant geometry for submanifolds in metric .-manifolds, together with some applications. The notion of .-structure was introduced by K.
26#
發(fā)表于 2025-3-26 01:10:52 | 只看該作者
Slant, Semi-slant and Pointwise Slant Submanifolds of 3-Structure Manifolds,The purpose of this chapter is to study the geometry of various kinds of slant submanifolds in almost contact metric 3-structure manifolds.
27#
發(fā)表于 2025-3-26 04:38:49 | 只看該作者
Slant Submanifolds of Conformal Sasakian Space Forms,Chen-Ricci inequality involving Ricci curvature and the squared mean curvature of different kinds of (slant) submanifolds of a conformal Sasakian space form tangent to the structure vector field of the ambient manifold are presented. Equality cases are also discussed.
28#
發(fā)表于 2025-3-26 11:20:22 | 只看該作者
Slant Curves and Magnetic Curves,This chapter treats slant curves and magnetic curves in almost contact metric manifolds. Special attention is paid to magnetic curves in Sasakian manifolds. We describe magnetic slant curves in Sasakian space forms.
29#
發(fā)表于 2025-3-26 15:49:48 | 只看該作者
Contact Slant Geometry of Submersions and Pointwise Slant and Semi-slant-Warped Product SubmanifoldNeill [.] and Gray [.] investigated the Riemannian submersion between Riemannian manifolds. These submersions were later extensively studied in differential geometry.
30#
發(fā)表于 2025-3-26 19:36:00 | 只看該作者
,Semi-Slant ,-, Hemi-Slant ,-Riemannian Submersions and?Quasi Hemi-Slant Submanifolds,A differentiable map . between Riemannian manifolds . and . is called a Riemannian submersion if . is onto and it satisfies .for . vector fields tangent to ., where . denotes the derivative map.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
监利县| 屏东县| 浏阳市| 明水县| 葫芦岛市| 北安市| 和田市| 兴海县| 桐梓县| 五指山市| 稷山县| 东乌珠穆沁旗| 长春市| 河池市| 蒙阴县| 洛宁县| 水富县| 滨州市| 景宁| 翁源县| 改则县| 淮南市| 夏河县| 淮北市| 灵宝市| 彭州市| 兴化市| 乡城县| 故城县| 滕州市| 万山特区| 江阴市| 纳雍县| 三江| 游戏| 贡山| 友谊县| 北安市| 黑龙江省| 呼玛县| 山西省|