找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Theory of Functions of Several Variables; Proceedings of a Con Walter Schempp,Karl Zeller Conference proceedings 1977 Springer

[復(fù)制鏈接]
樓主: 驅(qū)逐
11#
發(fā)表于 2025-3-23 10:21:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:10 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:00 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:56 | 只看該作者
Splines minimizing rotation-invariant semi-norms in Sobolev spaces,plines in one dimension. In general, data functionals are only supposed to be distributions with compact supports, belonging to H.(?.); there may be infinitely many of them. Splines are then expressed as convolutions μ . |t|. (or μ . |t|. Log |t|) + polynomials.
15#
發(fā)表于 2025-3-24 05:40:00 | 只看該作者
https://doi.org/10.1007/BFb0086559Invariant; Konstruktive Funktionentheorie; Manifold; Several Variables; Variables; convolution; function; t
16#
發(fā)表于 2025-3-24 09:47:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:26:51 | 只看該作者
Constructive Theory of Functions of Several Variables978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
0075-8434 Overview: 978-3-540-08069-5978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 22:23:30 | 只看該作者
Richard Willst?tter,Arthur Stollpecial ideals a n-dimensional generalization of Max Noether‘s theorem is obtained. This generalization enables us to answer questions arising in the constructive theory of functions as it is shown by three examples.
20#
發(fā)表于 2025-3-25 00:23:45 | 只看該作者
Untersuchung der Farbstoffgemische,h the dimension of the polynomials space in request in order to have the scheme numerically stable. In some concrete cases, the rate of growth of the Clenshaw sums is estimated. A most favorable rate of growth can be observed if the scheme is based on multivariate Cebyshev polynomials of the second kind.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 双辽市| 武陟县| 肃南| 荆门市| 兴隆县| 且末县| 新津县| 龙泉市| 德令哈市| 上林县| 连云港市| 黔南| 茂名市| 抚远县| 隆林| 永康市| 怀安县| 百色市| 三明市| 德令哈市| 南陵县| 贡嘎县| 青州市| 延川县| 涡阳县| 仲巴县| 封丘县| 永靖县| 阿城市| 上饶市| 南宁市| 滦平县| 镇沅| 繁峙县| 义马市| 浏阳市| 赤城县| 松阳县| 东阳市| 调兵山市|