找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Methods of Wiener-Hopf Factorization; I. Gohberg,M. A. Kaashoek Book 1986 Birkh?user Verlag Basel 1986 Eigenvalue.matrices.ma

[復(fù)制鏈接]
查看: 7309|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:14:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization
編輯I. Gohberg,M. A. Kaashoek
視頻videohttp://file.papertrans.cn/237/236111/236111.mp4
叢書(shū)名稱Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Constructive Methods of Wiener-Hopf Factorization;  I. Gohberg,M. A. Kaashoek Book 1986 Birkh?user Verlag Basel 1986 Eigenvalue.matrices.ma
描述The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ?. . . ? rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . ? [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n? say. B and C are j j j matrices of sizes n. x m and m x n . ? respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
出版日期Book 1986
關(guān)鍵詞Eigenvalue; matrices; matrix
版次1
doihttps://doi.org/10.1007/978-3-0348-7418-2
isbn_softcover978-3-0348-7420-5
isbn_ebook978-3-0348-7418-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightBirkh?user Verlag Basel 1986
The information of publication is updating

書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization影響因子(影響力)




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization影響因子(影響力)學(xué)科排名




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization被引頻次




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization被引頻次學(xué)科排名




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization年度引用




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization年度引用學(xué)科排名




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization讀者反饋




書(shū)目名稱Constructive Methods of Wiener-Hopf Factorization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:38:26 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:38 | 只看該作者
On Toeplitz and Wiener-Hopf Operators with Contourwise Rational Matrix and Operator Symbols operators with symbols defined on a curve composed of several non-intersecting simple closed contours. Also criteria and explicit formulas for canonical factorization of matrix functions relative to a compound contour are presented. The matrix functions we work with are rational on each of the comp
5#
發(fā)表于 2025-3-22 11:39:01 | 只看該作者
Canonical Pseudo-Spectral Factorization and Wiener-Hopf Integral Equationstorization is introduced, and all possible factorizations of this type are described in terms of realizations of the symbol and certain supporting projections. With each canonical pseudo-spectral factorization is related a pseudo-resolvent kernel, which satisfies the resolvent identities and is used
6#
發(fā)表于 2025-3-22 15:34:16 | 只看該作者
7#
發(fā)表于 2025-3-22 20:38:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:22 | 只看該作者
https://doi.org/10.1007/978-3-642-02460-3y matrix. A . of W relative to the real line is a multiplicative decomposition: . in which the factors W. and W. are of the form . where k. and k. are m × m matrix functions with entries in L. (-∞,0] and L.[0, ∞), respectively, and
9#
發(fā)表于 2025-3-23 03:19:40 | 只看該作者
10#
發(fā)表于 2025-3-23 09:37:28 | 只看該作者
On Toeplitz and Wiener-Hopf Operators with Contourwise Rational Matrix and Operator Symbols results are stated in terms of invertibility properties of a certain finite matrix called indicator, which is built from the realizations. The analysis does not depend on finite dimensionality and is carried out for operator valued symbols.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
板桥市| 北辰区| 淮滨县| 霍邱县| 共和县| 罗甸县| 璧山县| 嘉荫县| 石泉县| 屏南县| 常州市| 水富县| 交城县| 沂源县| 独山县| 北川| 安溪县| 隆昌县| 赞皇县| 闽侯县| 黔江区| 牟定县| 彭水| 突泉县| 镇平县| 通江县| 夏河县| 临汾市| 巴林左旗| 兰考县| 揭西县| 屏山县| 新化县| 英德市| 夹江县| 平远县| 三台县| 英山县| 那坡县| 洪湖市| 沈丘县|