找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Methods for Nonlinear Boundary Value Problems and Nonlinear Oscillations; Conference at the Ob J. Albrecht,L. Collatz,K. Kirch

[復(fù)制鏈接]
樓主: 摩擦
21#
發(fā)表于 2025-3-25 03:34:36 | 只看該作者
,Zur Einschliessung des Betragskleinsten Eigenwertes bei Eigenwertaufgaben mit Gew?hnlichen Differenfor such operators the existence of a nonnegative eigenfunction belonging to the smallest positive eigenvalue of the original problem is concluded. The bounds for this eigenvalue, stemming from the quotient theorem for positive operators, are in accordance with those given in [1].
22#
發(fā)表于 2025-3-25 08:17:51 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:44 | 只看該作者
,über die Konstruktion Invarianter Tori, welche von Einer Station?ren Grundl?sung Eines Reversiblen ameters. The remaining part of the spectrum may be arbitrary. The motion on the tori turns out to be quasiperiodic. Finally a generalized Newton method is described which enables one to construct the tori inspite of the arising difficulty with small divisors.
24#
發(fā)表于 2025-3-25 16:11:41 | 只看該作者
Innovationswettbewerb bei Spilloverlity inequality for the finite difference equations and another one which shows that the number of solutions is the same for the difference equations as for the boundary value problem. Our results are illustrated by two examples.
25#
發(fā)表于 2025-3-25 20:47:25 | 只看該作者
Unternehmensstrategien im Wettbewerb? (x)}. The results of Benci [Annali di Mat. 100 (1974), 191–209] are used to derive a variational inequality and to prove existence and uniqueness. The problem is approximated using piecewise linear finite elements and 0(h) convergence of the approximate solutions is proved using recent results due to Brezzi, Hager, and Raviart.
26#
發(fā)表于 2025-3-26 03:32:57 | 只看該作者
27#
發(fā)表于 2025-3-26 05:57:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:35:55 | 只看該作者
Constructive Methods for Nonlinear Boundary Value Problems and Nonlinear Oscillations978-3-0348-6283-7Series ISSN 0373-3149 Series E-ISSN 2296-6072
29#
發(fā)表于 2025-3-26 16:26:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潢川县| 巴林左旗| 广宗县| 霍林郭勒市| 峨眉山市| 涿鹿县| 陇西县| 洞口县| 秦皇岛市| 临夏市| 江安县| 沙田区| 贵定县| 成武县| 桃园县| 益阳市| 伽师县| 康平县| 冷水江市| 青龙| 密山市| 浮梁县| 神农架林区| 海盐县| 五莲县| 什邡市| 裕民县| 佛教| 彩票| 唐山市| 余江县| 漳浦县| 合江县| 孟州市| 新丰县| 淅川县| 四子王旗| 衢州市| 泰和县| 萍乡市| 乐平市|