找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Computation in Stochastic Models with Applications; The RG-Factorization Quan-Lin Li Book 2010 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: HAND
21#
發(fā)表于 2025-3-25 06:48:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:08:51 | 只看該作者
ciences..Presents recent results on applications in optimiza."Constructive Computation in Stochastic Models with Applications: The .RG.-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent impo
23#
發(fā)表于 2025-3-25 13:01:55 | 只看該作者
24#
發(fā)表于 2025-3-25 19:12:53 | 只看該作者
https://doi.org/10.1007/978-3-540-75951-5erive two sets of expressions for the quasi-stationary distribution. As important examples, we analyze Markov chains of ./1 type, Markov chains of ./1 type, Markov chains of ./1 type and level-dependent QBD processes.
25#
發(fā)表于 2025-3-25 20:42:38 | 只看該作者
26#
發(fā)表于 2025-3-26 01:34:00 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:19 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:58 | 只看該作者
Markov Chains of GI/G/1 Type,thermore, we simplify the A- and B-measures for Markov chains of ./1 type, and also express the .- and .-measures by means of the .- and .-measures, respectively. Based on the .- and .-measures, we provide spectral analysis for the .- and .-measures, and provide conditions for the state classification of Markov chains of .1 type.
29#
發(fā)表于 2025-3-26 13:41:31 | 只看該作者
30#
發(fā)表于 2025-3-26 19:21:04 | 只看該作者
Book 2010 for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensiti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬溪县| 峡江县| 荥经县| 水城县| 台山市| 盐源县| 沙河市| 荆州市| 临江市| 西藏| 蓬莱市| 公主岭市| 芜湖市| 绥德县| 宁都县| 武乡县| 梅州市| 龙井市| 清涧县| 连云港市| 吴江市| 井研县| 屯门区| 定陶县| 乳源| 喀喇沁旗| 雅江县| 南涧| 兴和县| 崇左市| 金乡县| 渭源县| 五台县| 招远市| 唐河县| 壤塘县| 普格县| 天峨县| 延川县| 五指山市| 囊谦县|