找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Construction of Wavelets Through Walsh Functions; Yu. A. Farkov,Pammy Manchanda,Abul Hasan Siddiqi Book 2019 Springer Nature Singapore Pte

[復(fù)制鏈接]
樓主: ACORN
31#
發(fā)表于 2025-3-26 23:44:01 | 只看該作者
Peter H. Feindt,Thomas Saretzki 1940s, who offered to Vilenkin study series with respect to characters of a large class of abelian groups which includes the Cantor group as special case see Vilenkin [.], Fine [.], Agaev, Vilenkin, Dzhafarli, Rubinshtein [.]. For wavelets on Vilenkin groups most of the results relate to the locall
32#
發(fā)表于 2025-3-27 01:34:30 | 只看該作者
Peter H. Feindt,Thomas Saretzkinkin group, and application of biorthogonal dyadic wavelets to image processing are presented and these results are discussed in more detail Farkov (Facta Univers (Nis) ser. Elec Eng 21: 309–325, 2008), Farkov, Maksimov, and Stroganov (Int. J. Wavelets Multiresolution Inf Process 9: 485–499, 2011),
33#
發(fā)表于 2025-3-27 07:58:30 | 只看該作者
https://doi.org/10.1007/978-3-531-92354-3and is based on the theory of spectral pairs. In this set up, the associated subspace . of . has, as an orthonormal basis, a collection of translates of the scaling function . of the form . where ., . is an integer and . is an odd integer with . such that . and . are relatively prime and . is the se
34#
發(fā)表于 2025-3-27 11:59:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:23:28 | 只看該作者
Introduction to Walsh Analysis and Wavelets,urier series such as Haar–Fourier series and Walsh–Fourier series were introduced by Haar [.] and Walsh [.], respectively; Kaczmarz, Steinhaus, and Paley studied some aspects of Walsh system between 1929 and 1931.
36#
發(fā)表于 2025-3-27 21:09:31 | 只看該作者
37#
發(fā)表于 2025-3-28 01:25:07 | 只看該作者
https://doi.org/10.1007/978-981-13-6370-2Walsh Functions; Wavelets; Haar Function; Haar-Vilenkin Wavelet; Non-uniform Haar Wavelets; Generalized H
38#
發(fā)表于 2025-3-28 05:33:58 | 只看該作者
978-981-13-6372-6Springer Nature Singapore Pte Ltd. 2019
39#
發(fā)表于 2025-3-28 09:37:03 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 曲周县| 汝城县| 来安县| 平原县| 灯塔市| 商都县| 元阳县| 福州市| 吉安县| 武山县| 玉树县| 台前县| 秭归县| 松桃| 随州市| 绥德县| 常州市| 鲁甸县| 凤城市| 独山县| 米林县| 临江市| 威信县| 苏尼特左旗| 玛沁县| 米泉市| 厦门市| 岑溪市| 措勤县| 岢岚县| 长葛市| 玉环县| 合山市| 阳新县| 黑水县| 类乌齐县| 西和县| 宁南县| 会泽县| 蓬莱市|