找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constrained Optimization and Optimal Control for Partial Differential Equations; Günter Leugering,Sebastian Engell,Stefan Ulbrich Book 201

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:13:13 | 只看該作者
12#
發(fā)表于 2025-3-23 16:58:48 | 只看該作者
Stabilization of Incompressible Flow Problems by Riccati-based Feedbacklem. For this purpose, algorithmic advances in solving the associated algebraic Riccati equations are needed and investigated here. The computational complexity of the new algorithms is essentially proportional to the simulation of the forward problem.
13#
發(fā)表于 2025-3-23 21:30:47 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:13 | 只看該作者
https://doi.org/10.1007/978-3-211-75784-0ing from finite element discretizations in space are solved with the help of a primal-dual active set approach. We show several numerical computations also involving systems of parabolic variational inequalities.
17#
發(fā)表于 2025-3-24 10:55:24 | 只看該作者
Measuring Ultrashort Optical Pulses,nd ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for the discretization of the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second-order shape optimization algorithms are obtained.
18#
發(fā)表于 2025-3-24 18:47:09 | 只看該作者
19#
發(fā)表于 2025-3-24 22:33:44 | 只看該作者
https://doi.org/10.1007/978-3-211-75784-0unction, we discuss in detail the choice of an appropriate control or design space preconditioner, discuss implementation issues and present a convergence analysis. We show numerical examples, among them applications from shape design in fluid mechanics and parameter optimization in a climate model.
20#
發(fā)表于 2025-3-25 01:55:42 | 只看該作者
Automated Extension of Fixed Point PDE Solvers for Optimal Design with Bounded Retardationunction, we discuss in detail the choice of an appropriate control or design space preconditioner, discuss implementation issues and present a convergence analysis. We show numerical examples, among them applications from shape design in fluid mechanics and parameter optimization in a climate model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神木县| 迁西县| 桦南县| 城固县| 黄骅市| 耒阳市| 平顶山市| 泰安市| 浮梁县| 射阳县| 临夏县| 清新县| 怀来县| 陇南市| 金华市| 六枝特区| 汝城县| 城固县| 和田县| 修水县| 哈密市| 太仓市| 建水县| 岫岩| 齐河县| 泌阳县| 金寨县| 昂仁县| 香河县| 六安市| 四会市| 亚东县| 宣汉县| 垫江县| 陆丰市| 安庆市| 固始县| 铜鼓县| 安仁县| 乌拉特后旗| 枣阳市|