找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conservative Realizations of Herglotz-Nevanlinna Functions; Yuri Arlinskii,Sergey Belyi,Eduard Tsekanovskii Book 2011 Springer Basel AG 20

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 11:51:06 | 只看該作者
Conservative Realizations of Herglotz-Nevanlinna Functions978-3-7643-9996-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
12#
發(fā)表于 2025-3-23 17:15:29 | 只看該作者
13#
發(fā)表于 2025-3-23 21:41:23 | 只看該作者
14#
發(fā)表于 2025-3-24 00:24:10 | 只看該作者
https://doi.org/10.1007/978-3-7643-9996-2Herglotz-Nevanlinna function; operator theory; system theory
15#
發(fā)表于 2025-3-24 03:30:09 | 只看該作者
978-3-0348-0333-5Springer Basel AG 2011
16#
發(fā)表于 2025-3-24 09:16:07 | 只看該作者
In geotechnical engineering, time-dependent settlement is normally associated with the process of consolidation. In this, settlement behaviour is determined by the rate at which water is able to flow from the voids under a hydraulic gradient, allowing particles to slide into a more compact arrangement.
17#
發(fā)表于 2025-3-24 12:40:24 | 只看該作者
In this chapter some additional functionalities that FOPID controllers should posses for their use in industry are discussed. In particular, the problem of tuning the set-point weight for FOPID controllers is addressed in the first part, whereas the second part is devoted to the analysis of anti-windup strategies.
18#
發(fā)表于 2025-3-24 17:34:36 | 只看該作者
,Symmetries and Noether’s Theorem in MHD,In this chapter we discuss Noether’s first theorem in MHD. The analysis is similar to that in Padhye (.) and Webb et al. (.) We consider the Lagrangian form of the action (.), namely
19#
發(fā)表于 2025-3-24 19:29:58 | 只看該作者
20#
發(fā)表于 2025-3-25 01:55:54 | 只看該作者
Advected Invariants,Tur and Janovsky (1993) developed a formalism for Lie dragging of geometrical objects . (tensors, p-forms and vectors) that are advected with the flow in ideal gas dynamics and MHD. The basic requirement for . to be advected or Lie dragged with the flow . is that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵东县| 江北区| 大邑县| 水城县| 凭祥市| 常州市| 孝昌县| 隆昌县| 陆川县| 莱西市| 达拉特旗| 革吉县| 如东县| 响水县| 双城市| 台湾省| 亚东县| 平度市| 河源市| 湖北省| 清流县| 广宗县| 永靖县| 张家港市| 彩票| 瑞丽市| 镇康县| 龙井市| 政和县| 阿拉善右旗| 安西县| 原平市| 醴陵市| 东宁县| 夏河县| 平罗县| 商丘市| 深水埗区| 偏关县| 郓城县| 奈曼旗|