找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectomics in NeuroImaging; Second International Guorong Wu,Islem Rekik,Brent Munsell Conference proceedings 2018 Springer Nature Switzer

[復(fù)制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-26 22:54:28 | 只看該作者
32#
發(fā)表于 2025-3-27 01:38:02 | 只看該作者
33#
發(fā)表于 2025-3-27 09:08:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:06:55 | 只看該作者
Conference proceedings 2018s deal with?new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications..
35#
發(fā)表于 2025-3-27 16:40:20 | 只看該作者
36#
發(fā)表于 2025-3-27 21:15:19 | 只看該作者
37#
發(fā)表于 2025-3-27 22:37:34 | 只看該作者
FOD-Based Registration for Susceptibility Distortion Correction in Connectome Imaging, of human brain pathways. It was recently noted, however, that significant distortions remain present in the data of most subjects preprocessed by the HCP-Pipeline, which have been widely distributed and used extensively in connectomics research. Fundamentally this is caused by the reliance of the H
38#
發(fā)表于 2025-3-28 02:27:29 | 只看該作者
GIFE: Efficient and Robust Group-Wise Isometric Fiber Embedding, We previously propose the Group-w.se Tractogram Analysis (GiTA) framework for identifying anatomically valid fibers across subjects according to cross-subject consistency. However, the original framework is based on computationally expensive brute-force KNN search. In this work, we propose a more g
39#
發(fā)表于 2025-3-28 09:00:21 | 只看該作者
Multi-modal Brain Tensor Factorization: Preliminary Results with AD Patients,, the variability in connectivity definitions poses a challenge. We propose to represent multi-modal brain networks over a population with a single 4D brain tensor (.) and factorize . to get a lower dimensional representation per case and per modality. We used 7 known functional networks as the cano
40#
發(fā)表于 2025-3-28 11:32:08 | 只看該作者
Intact Connectional Morphometricity Learning Using Multi-view Morphological Brain Networks with App identifying the morphological signature of a specific brain disorder can improve diagnosis and better explain how neuroanatomical changes associate with function and cognition. To capture this signature, a landmark study introduced, brain ., a global metric defined as the proportion of phenotypic v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杂多县| 五台县| 伊通| 平陆县| 临西县| 乌苏市| 岳西县| 武山县| 双牌县| 石门县| 赣州市| 霍州市| 荃湾区| 潜江市| 土默特右旗| 乌拉特中旗| 米脂县| 厦门市| 阜新| 万宁市| 宁城县| 长海县| 始兴县| 井陉县| 彭州市| 泰顺县| 连山| 松溪县| 晋宁县| 新晃| 屏东市| 乐至县| 莒南县| 定日县| 顺义区| 崇阳县| 林周县| 九江县| 营口市| 新疆| 连平县|