找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectomics in NeuroImaging; Third International Markus D. Schirmer,Archana Venkataraman,Ai Wern Ch Conference proceedings 2019 Springer

[復(fù)制鏈接]
查看: 33558|回復(fù): 51
樓主
發(fā)表于 2025-3-21 16:38:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Connectomics in NeuroImaging
副標(biāo)題Third International
編輯Markus D. Schirmer,Archana Venkataraman,Ai Wern Ch
視頻videohttp://file.papertrans.cn/236/235639/235639.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Connectomics in NeuroImaging; Third International  Markus D. Schirmer,Archana Venkataraman,Ai Wern Ch Conference proceedings 2019 Springer
描述This book constitutes the refereed proceedings of the Third International Workshop on Connectomics in NeuroImaging, CNI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019..The 13 full papers presented were carefully reviewed and selected from 14 submissions. The papers deal with new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; brain connectivity; classification; data mining; diffusion MRI; feature selectio
版次1
doihttps://doi.org/10.1007/978-3-030-32391-2
isbn_softcover978-3-030-32390-5
isbn_ebook978-3-030-32391-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Connectomics in NeuroImaging影響因子(影響力)




書(shū)目名稱Connectomics in NeuroImaging影響因子(影響力)學(xué)科排名




書(shū)目名稱Connectomics in NeuroImaging網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Connectomics in NeuroImaging網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Connectomics in NeuroImaging被引頻次




書(shū)目名稱Connectomics in NeuroImaging被引頻次學(xué)科排名




書(shū)目名稱Connectomics in NeuroImaging年度引用




書(shū)目名稱Connectomics in NeuroImaging年度引用學(xué)科排名




書(shū)目名稱Connectomics in NeuroImaging讀者反饋




書(shū)目名稱Connectomics in NeuroImaging讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:32:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:39 | 只看該作者
地板
發(fā)表于 2025-3-22 07:21:56 | 只看該作者
Covariance Shrinkage for Dynamic Functional Connectivity,nd thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by ., a statistical method used for the estimation of large covariance matrices
5#
發(fā)表于 2025-3-22 10:12:32 | 只看該作者
Rapid Acceleration of the Permutation Test via Transpositions,y possible permutation for large-scale brain imaging datasets such as HCP and ADNI with hundreds of subjects is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributi
6#
發(fā)表于 2025-3-22 15:57:41 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:09 | 只看該作者
A Mass Multivariate Edge-wise Approach for Combining Multiple Connectomes to Improve the Detection nces. While these connectomes have traditionally been constructed using resting-state data, recent work has highlighted the importance of combining multiple task connectomes, particularly for identifying individual differences. Yet, these methods have not yet been extended to investigate differences
8#
發(fā)表于 2025-3-23 00:31:56 | 只看該作者
Adversarial Connectome Embedding for Mild Cognitive Impairment Identification Using Cortical Morphoques, they can further be utilized to build computer-aided MCI diagnosis models. In this paper, we introduce . (ACE) architecture, which is rooted in graph convolution and adversarial regularization to learn relevant connectional features for MCI classification. Existing connectome-based embedding m
9#
發(fā)表于 2025-3-23 03:55:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:28:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嫩江县| 兴和县| 逊克县| 武胜县| 裕民县| 祁东县| 资兴市| 静乐县| 绵阳市| 雅安市| 嘉义县| 随州市| 祁门县| 宝坻区| 白河县| 荆门市| 东台市| 肥乡县| 砚山县| 巧家县| 德州市| 民丰县| 许昌市| 微博| 桦川县| 张家界市| 利辛县| 滁州市| 枣庄市| 德格县| 泽州县| 宁安市| 射洪县| 土默特左旗| 都江堰市| 错那县| 武穴市| 贡嘎县| 黑山县| 济宁市| 昌邑市|