找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing; Stefan Wermter,Ellen Riloff,Gabriele Schel

[復(fù)制鏈接]
樓主: FETID
31#
發(fā)表于 2025-3-26 22:29:24 | 只看該作者
32#
發(fā)表于 2025-3-27 02:04:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:52:44 | 只看該作者
0302-9743 the state of the art in the most promising current approaches to learning for NLP and is thus compulsory reading for researchers in the field or for anyone applying the new techniques to challenging real-world NLP problems.978-3-540-60925-4978-3-540-49738-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
34#
發(fā)表于 2025-3-27 10:51:50 | 只看該作者
35#
發(fā)表于 2025-3-27 15:51:30 | 只看該作者
36#
發(fā)表于 2025-3-27 18:23:52 | 只看該作者
Turbulent Shear Layers in Supersonic Flowl class. This method does not depend on any specific grammar or set of semantical categories, so it can be used on (almost) any existing system. We present experimental results that show our method gives a considerable improvement over regular stochastic grammars.
37#
發(fā)表于 2025-3-27 23:09:22 | 只看該作者
https://doi.org/10.1007/3-540-33591-9he accuracy of the statistical method remains 10% below the performance of human experts. This suggests a limit on what can be learned automatically from text, and points to the need to combine machine learning with human expertise.
38#
發(fā)表于 2025-3-28 04:15:36 | 只看該作者
Lecture Notes in Computer Sciencel natural language processing. We report experimental results of applying a specific type of committee-based selection during training of a stochastic part-of-speech tagger, and demonstrate substantially improved learning rates over complete training using all of the text.
39#
發(fā)表于 2025-3-28 10:12:19 | 只看該作者
Separating learning and representation,ed the potential to correctly recognise embeddings of any length. These findings illustrate the benefits of the study of representation, which can provide a basis for the development of novel learning rules.
40#
發(fā)表于 2025-3-28 14:18:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 马鞍山市| 天镇县| 礼泉县| 牡丹江市| 乌审旗| 辽中县| 桐庐县| 肇源县| 临清市| 大冶市| 青阳县| 和政县| 囊谦县| 广昌县| 隆子县| 大丰市| 平果县| 宁夏| 郴州市| 巴彦淖尔市| 乌拉特后旗| 壶关县| 南康市| 南郑县| 五台县| 兴和县| 南宫市| 兴安盟| 二连浩特市| 平阴县| 旺苍县| 社会| 金乡县| 台中市| 德清县| 丰都县| 华亭县| 江华| 阿拉尔市| 永和县|