找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing; Stefan Wermter,Ellen Riloff,Gabriele Schel

[復(fù)制鏈接]
查看: 12752|回復(fù): 64
樓主
發(fā)表于 2025-3-21 19:48:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing
編輯Stefan Wermter,Ellen Riloff,Gabriele Scheler
視頻videohttp://file.papertrans.cn/236/235623/235623.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing;  Stefan Wermter,Ellen Riloff,Gabriele Schel
描述This book is based on the workshop on New Approaches to Learning for Natural Language Processing, held in conjunction with the International Joint Conference on Artificial Intelligence, IJCAI‘95, in Montreal, Canada in August 1995..Most of the 32 papers included in the book are revised selected workshop presentations; some papers were individually solicited from members of the workshop program committee to give the book an overall completeness. Also included, and written with the novice reader in mind, is a comprehensive introductory survey by the volume editors. The volume presents the state of the art in the most promising current approaches to learning for NLP and is thus compulsory reading for researchers in the field or for anyone applying the new techniques to challenging real-world NLP problems.
出版日期Conference proceedings 1996
關(guān)鍵詞Algorithmisches Lernen; Computational Learning; Grammatical Inferenz; Grammatische Inferenz; Learning Al
版次1
doihttps://doi.org/10.1007/3-540-60925-3
isbn_softcover978-3-540-60925-4
isbn_ebook978-3-540-49738-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing影響因子(影響力)




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing影響因子(影響力)學(xué)科排名




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing網(wǎng)絡(luò)公開度




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing被引頻次




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing被引頻次學(xué)科排名




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing年度引用




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing年度引用學(xué)科排名




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing讀者反饋




書目名稱Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:34 | 只看該作者
地板
發(fā)表于 2025-3-22 08:05:11 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:54 | 只看該作者
X. B. Reed Jr.,L. Spiegel,S. Hartlandkind of discriminatory power provided by the Principles and Parameters linguistic framework, or Government and Binding theory. We investigate the following models: feed-forward neural networks, Frasconi-Gori-Soda and Back-Tsoi locally recurrent neural networks, Williams and Zipser and Elman recurren
6#
發(fā)表于 2025-3-22 16:39:07 | 只看該作者
Alexander J. Smits,Jean-Paul Dussaugee refinement and network learning. This paper describes a decompositional rule extraction technique which generates rules governing the firing of individual nodes in a feedforward neural network. The technique employs heuristics to reduce the complexity in searching for rules which explain the behav
7#
發(fā)表于 2025-3-22 17:49:05 | 只看該作者
https://doi.org/10.1007/b137383res for the description of relevant meanings of plural definiteness. A small training set (30 sentences) was created by linguistic criteria, and a functional mapping from the semantic feature representation to the overt category of indefinite/definite article was learned. The learned function was ap
8#
發(fā)表于 2025-3-23 00:46:51 | 只看該作者
Boundary Layer Turbulence Behavior, besides the necessary input is the analysis of the various text and document structures. In our prototype CONCAT we use neural network technology to learn about the relations within the concept and document space of an existing domain. The results are quite encouraging because with existing input d
9#
發(fā)表于 2025-3-23 04:11:35 | 只看該作者
https://doi.org/10.1007/b137383stem using a large number of connectionist and symbolic modules. Our system SCREEN learns a flat syntactic and semantic analysis of incremental streams of word hypothesis sequences. In this paper we focus on techniques for improving the quality of pruned hypotheses from a speech recognizer using aco
10#
發(fā)表于 2025-3-23 05:54:16 | 只看該作者
Alexander J. Smits,Jean-Paul Dussauge linguistic characteristics. This paper presents SKOPE, a connectionist/symbolic spoken Korean processing engine, emphasizing that: 1) connectionist and symbolic techniques must be selectively applied according to their relative strength and weakness, and 2) linguistic characteristics of Korean must
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 17:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 星子县| 永春县| 镇沅| 永修县| 循化| 光山县| 千阳县| 昌邑市| 土默特右旗| 城步| 仪陇县| 明水县| 石屏县| 昌乐县| 西畴县| 平定县| 大理市| 兴城市| 丹寨县| 青浦区| 合山市| 武强县| 化州市| 和硕县| 哈尔滨市| 宜良县| 沾益县| 措美县| 抚宁县| 庆云县| 奉节县| 宜兰县| 杭锦后旗| 汽车| 阿尔山市| 黄石市| 宣恩县| 韶关市| 孝昌县| 巴东县|