找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectionist Models of Learning, Development and Evolution; Proceedings of the S Robert M. French,Jacques P. Sougné Conference proceedings

[復(fù)制鏈接]
樓主: CRUST
41#
發(fā)表于 2025-3-28 15:11:20 | 只看該作者
Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks effective information transfer in the brain. Robust and fast information flow processing methods warranting efficient information transfer, e.g. grouping of inputs and information maximization principles need to be applied. For this reason, indepent component analyses on groups of patterns were con
42#
發(fā)表于 2025-3-28 21:52:31 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:37 | 只看該作者
Developing Knowledge about Living Things: A Connectionist Investigationata shows differences in the rate at which children acquire subcategories of living things, differences in the timing of changes in knowledge organisation, and changes in the distribution of feature types children use to represent their knowledge. The connectionist model was developed to investigate
44#
發(fā)表于 2025-3-29 04:50:45 | 只看該作者
Paying Attention to Relevant Dimensions: A Localist Approach stimulus dimensions are irrelevant to the classification task in hand. A procedure is suggested by which a localist model can learn prototype representations that foeus on the relevant dimensions only. These permit good generalization which would be lacking in a simple exemplar-based model.
45#
發(fā)表于 2025-3-29 11:00:52 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:05 | 只看該作者
Modelling Cognitive Development with Constructivist Neural Networksnomena. This point is empirically investigated with a constructivist neural network model of the acquisition of past tense/particip1e inflections. The model dynamically adapts its architecture to the leaming task by growing units and connections in a task-specific way during learning. In contrast to
47#
發(fā)表于 2025-3-29 19:36:41 | 只看該作者
48#
發(fā)表于 2025-3-29 22:44:30 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:21 | 只看該作者
50#
發(fā)表于 2025-3-30 04:15:33 | 只看該作者
Visual Crowding and Category-Specific Deficits: a Neural Network Modeltegories are distinct. In a series of experiments a Kohonen self organizing feature map was trained to recognise 2D digitised images. As a result, images of animals and musical instruments were represented within a shared set of processing units, which suggests that they are visually crowded categor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳市| 庐江县| 高密市| 大兴区| 松江区| 长阳| 响水县| 互助| 龙胜| 扎兰屯市| 宜兰市| 武鸣县| 新巴尔虎右旗| 越西县| 登封市| 花莲市| 新巴尔虎左旗| 元江| 陆丰市| 肃南| 托克逊县| 阳东县| 屯门区| 宜春市| 平利县| 永康市| 潮安县| 五华县| 吉首市| 谢通门县| 新乡市| 普安县| 镇坪县| 德昌县| 平远县| 犍为县| 泽普县| 垣曲县| 抚远县| 乐清市| 邹平县|