找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjugate Gradient Algorithms in Nonconvex Optimization; Rados?aw Pytlak Book 2009 Springer-Verlag Berlin Heidelberg 2009 Algebra.Bound Co

[復(fù)制鏈接]
查看: 15664|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:27:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization
編輯Rados?aw Pytlak
視頻videohttp://file.papertrans.cn/236/235562/235562.mp4
概述Includes supplementary material:
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Conjugate Gradient Algorithms in Nonconvex Optimization;  Rados?aw Pytlak Book 2009 Springer-Verlag Berlin Heidelberg 2009 Algebra.Bound Co
描述.This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. ..Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. ..The special attention is paid to the methods of shortest residuals developed by the author. Several effective optimization techniques based on these methods are presented. ..Because of the emphasis on practical methods, as well as rigorous mathematical treatment of their convergence analysis, the book is aimed at a wide audience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. .
出版日期Book 2009
關(guān)鍵詞Algebra; Bound Constrained Optimization; Conjugate Gradient Algorithms; Continuous Optimization; Large
版次1
doihttps://doi.org/10.1007/978-3-540-85634-4
isbn_softcover978-3-642-09925-0
isbn_ebook978-3-540-85634-4Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization影響因子(影響力)




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization影響因子(影響力)學(xué)科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization網(wǎng)絡(luò)公開(kāi)度




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization被引頻次




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization被引頻次學(xué)科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization年度引用




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization年度引用學(xué)科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization讀者反饋




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:13 | 只看該作者
1571-568X mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. .978-3-642-09925-0978-3-540-85634-4Series ISSN 1571-568X
板凳
發(fā)表于 2025-3-22 02:17:45 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:37 | 只看該作者
Phase Domains and Phase Solitons,iable problems were proposed. These propositions relied on the simplicity of their counterparts for quadratic problems. As we have shown in the previous chapter a conjugate gradient algorithm is an iterative process which requires at each iteration the current gradient and the previous direction. Th
5#
發(fā)表于 2025-3-22 09:48:35 | 只看該作者
6#
發(fā)表于 2025-3-22 14:03:14 | 只看該作者
Subcritical Solitons I: Saturable Absorber, preconditioned conjugate gradient algorithms by others. The purpose of scaling in methods applied to quadratics is to transform eigenvalues of the Hessian matrix. Theorem 1.11 suggests that if eigenvalues are clustered then a conjugate gradient algorithm minimizes the quadratic in the number of ite
7#
發(fā)表于 2025-3-22 19:37:08 | 只看該作者
Todd Shelly,Nancy Epsky,Roger Vargason. The idea behind preconditioned conjugate gradient algorithm is to transform the decision vector by linear transformation . such that after the transformation the nonlinear problem is . to solve — eigenvalues of Hessian matrices of the objective function of the new optimization problem are more c
8#
發(fā)表于 2025-3-22 23:59:07 | 只看該作者
https://doi.org/10.1007/978-3-540-36308-8duals which uses the projection operator to cope with box constraints is competitive to the benchmark code L-BFGS-B in terms of CPU time (cf. Figs. 10.1, 10.2, 10.4, 10.6). For larger problems it is almost as efficient as L-BFGS-B program also in terms of the number of function evaluations (cf. Fig.
9#
發(fā)表于 2025-3-23 04:19:47 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:17 | 只看該作者
Fundamental tests with trapped antiprotons,The method of shortest residuals is briefly discussed in Chap. 1. We show there that the method differs from a standard conjugate gradient algorithm only by scaling factors applied to conjugate directions. This is true when problems with quadratics are considered. However, these methods are quite different if applied to nonconvex functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 明光市| 句容市| 南通市| 怀宁县| 博罗县| 繁昌县| 义乌市| 临城县| 新乡市| 桦甸市| 鄂伦春自治旗| 正镶白旗| 盘山县| 宣武区| 潞城市| 合阳县| 沙洋县| 抚松县| 加查县| 江门市| 吴桥县| 大关县| 尉氏县| 句容市| 揭阳市| 云和县| 镶黄旗| 麻江县| 绥棱县| 阳江市| 肥西县| 红安县| 平遥县| 沾化县| 仙居县| 旬邑县| 阳泉市| 鄂托克旗| 中江县| 无为县|