找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Book 1992 Springer Fachmedien Wiesbaden 1992 Algebra.Arithm

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 11:37:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:12 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:50:04 | 只看該作者
The Explanation of Flow Systems,for Beilinson’s conjectures. These conjectures are then formulated in such a way that they generalize, at the same time, a conjecture of Deligne on the values of L-functions of motives at so-called critical points. We will state the conjectures only for smooth projective varieties defined over the r
15#
發(fā)表于 2025-3-24 06:03:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:40 | 只看該作者
The Explanation of Network Form,rd conjecture regards this situation for smooth, projective varieties over ., and reduces to a weakened form of the Birch & Swinnerton-Dyer Conjectures in the case of an elliptic curve or an abelian variety over .. The elliptic regulator is generalized to become the determinant of an arithmetic inte
17#
發(fā)表于 2025-3-24 12:37:45 | 只看該作者
Transport for the Space Economyight filtration. In this way it applies to general schemes over the complex numbers. The relation with motivic cohomology is again given by a regulator map that is conjectured to have dense image, at least for smooth schemes that can be defined over a number field. This conjectured property induces
18#
發(fā)表于 2025-3-24 18:30:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:28 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:47 | 只看該作者
Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties,ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平泉县| 遵义市| 文成县| 西林县| 鹤庆县| 黄冈市| 宁蒗| 万州区| 江都市| 错那县| 仙游县| 西盟| 出国| 上饶市| 拜城县| 蒙山县| 秦皇岛市| 丹凤县| 敦化市| 印江| 乌拉特中旗| 时尚| 林口县| 桂林市| 乐业县| 谢通门县| 黄石市| 井研县| 策勒县| 沧州市| 抚宁县| 兴和县| 龙井市| 承德市| 土默特右旗| 柯坪县| 榕江县| 姚安县| 福贡县| 利川市| 栾川县|