找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Book 1992 Springer Fachmedien Wiesbaden 1992 Algebra.Arithm

[復制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 11:37:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:12 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:50:04 | 只看該作者
The Explanation of Flow Systems,for Beilinson’s conjectures. These conjectures are then formulated in such a way that they generalize, at the same time, a conjecture of Deligne on the values of L-functions of motives at so-called critical points. We will state the conjectures only for smooth projective varieties defined over the r
15#
發(fā)表于 2025-3-24 06:03:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:40 | 只看該作者
The Explanation of Network Form,rd conjecture regards this situation for smooth, projective varieties over ., and reduces to a weakened form of the Birch & Swinnerton-Dyer Conjectures in the case of an elliptic curve or an abelian variety over .. The elliptic regulator is generalized to become the determinant of an arithmetic inte
17#
發(fā)表于 2025-3-24 12:37:45 | 只看該作者
Transport for the Space Economyight filtration. In this way it applies to general schemes over the complex numbers. The relation with motivic cohomology is again given by a regulator map that is conjectured to have dense image, at least for smooth schemes that can be defined over a number field. This conjectured property induces
18#
發(fā)表于 2025-3-24 18:30:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:28 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:47 | 只看該作者
Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties,ensions of their pure analogues and the corresponding categories should be tannakian. Deligne has suggested a somewhat different definition of mixed motives, but in both Jannsen’s and his conception the fundamental notion has become the realization.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 06:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
雷州市| 分宜县| 葵青区| 故城县| 沐川县| 黎城县| 麻城市| 视频| 南乐县| 宜兴市| 宁陕县| 弥渡县| 阳春市| 建平县| 巩留县| 茌平县| 张北县| 册亨县| 盖州市| 曲松县| 昌图县| 东山县| 平利县| 农安县| 平塘县| 寿阳县| 博兴县| 博白县| 安多县| 河西区| 青岛市| 璧山县| 红原县| 陵水| 神池县| 莒南县| 四子王旗| 龙山县| 开平市| 鹤峰县| 安远县|