找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[復制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 05:26:44 | 只看該作者
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
22#
發(fā)表于 2025-3-25 10:26:45 | 只看該作者
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
23#
發(fā)表于 2025-3-25 15:43:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:28 | 只看該作者
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
26#
發(fā)表于 2025-3-26 04:03:35 | 只看該作者
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
27#
發(fā)表于 2025-3-26 04:39:51 | 只看該作者
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
28#
發(fā)表于 2025-3-26 11:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:31:59 | 只看該作者
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 17:30:39 | 只看該作者
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
竹溪县| 华坪县| 襄樊市| 绥棱县| 蒲城县| 建水县| 闸北区| 呼和浩特市| 开远市| 吉水县| 禄劝| 凤庆县| 隆林| 南靖县| 富川| 河北区| 津市市| 东宁县| 巴东县| 安平县| 诏安县| 潜江市| 柘城县| 越西县| 太谷县| 南召县| 灌阳县| 肃宁县| 滨海县| 安义县| 镇平县| 离岛区| 张北县| 铜陵市| 桑植县| 古田县| 杭州市| 二手房| 土默特左旗| 井陉县| 和平区|