找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[復(fù)制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 05:26:44 | 只看該作者
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
22#
發(fā)表于 2025-3-25 10:26:45 | 只看該作者
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
23#
發(fā)表于 2025-3-25 15:43:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:28 | 只看該作者
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
26#
發(fā)表于 2025-3-26 04:03:35 | 只看該作者
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
27#
發(fā)表于 2025-3-26 04:39:51 | 只看該作者
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
28#
發(fā)表于 2025-3-26 11:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:31:59 | 只看該作者
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 17:30:39 | 只看該作者
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石门县| 德兴市| 渭源县| 桐梓县| 府谷县| 茶陵县| 灵寿县| 禹城市| 介休市| 南雄市| 娱乐| 和龙市| 丽水市| 江孜县| 湄潭县| 类乌齐县| 同江市| 太康县| 裕民县| 通化市| 泗阳县| 广丰县| 六安市| 垫江县| 鹤岗市| 海阳市| 镇康县| 河津市| 峨边| 濮阳县| 措勤县| 东乡| 肥城市| 从化市| 龙陵县| 谢通门县| 健康| 乐东| 曲水县| 独山县| 玉屏|