找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Geometry; A Publication of the Ravi S. Kulkarni,Ulrich Pinkall Book 1988 Springer Fachmedien Wiesbaden 1988 Geometrie.Lehrsatz.Ma

[復(fù)制鏈接]
樓主: CLIP
21#
發(fā)表于 2025-3-25 05:59:53 | 只看該作者
Conformal and Isometric Immersions of Conformally Flat Riemannian Manifolds into Spheres and Euclidetric obstructions for the existence of a conformai immersion into the N-dimensional sphere S. with N≦ 2n-2 (which are due to [Moore 2] and [Moore 3]) as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of co
22#
發(fā)表于 2025-3-25 07:37:57 | 只看該作者
https://doi.org/10.1007/978-1-4615-2744-2omains. This was confirmed by Gauss in his . This is esentially the existence of “isothermal co-ordinates” in the . . case. It is interesting to note that this study preceded and partially motivated Gauss’s later foundational work on the notion of curvature. For an account of this interesting history see Dombrowski [D], pp 127–130.
23#
發(fā)表于 2025-3-25 14:20:33 | 只看該作者
24#
發(fā)表于 2025-3-25 18:43:08 | 只看該作者
25#
發(fā)表于 2025-3-25 22:59:57 | 只看該作者
Transition-Metal Defects in Silicon as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of conformally flat manifolds as space forms, products of space forms with opposite curvature and warped products of S. and a nonspherical space form.
26#
發(fā)表于 2025-3-26 02:00:21 | 只看該作者
,Conformal Structures and M?bius Structures,omains. This was confirmed by Gauss in his . This is esentially the existence of “isothermal co-ordinates” in the . . case. It is interesting to note that this study preceded and partially motivated Gauss’s later foundational work on the notion of curvature. For an account of this interesting history see Dombrowski [D], pp 127–130.
27#
發(fā)表于 2025-3-26 07:16:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
Topics in the Theory of Quasiregular Mappings, have in general branching. The most interesting geometric features of the theory of quasiregular maps are in general of global character. While many relatively strong and precise results of this nature exist, the connections to differential geometry for example are not well understood and there is much left for further research.
29#
發(fā)表于 2025-3-26 13:39:00 | 只看該作者
Conformal and Isometric Immersions of Conformally Flat Riemannian Manifolds into Spheres and Euclid as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of conformally flat manifolds as space forms, products of space forms with opposite curvature and warped products of S. and a nonspherical space form.
30#
發(fā)表于 2025-3-26 17:32:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲水县| 台中市| 红河县| 中牟县| 湖南省| 杭锦后旗| 长治市| 鄄城县| 曲沃县| 吴桥县| 桦川县| 罗田县| 洞口县| 武邑县| 龙陵县| 分宜县| 平陆县| 资中县| 仙游县| 达日县| 上饶县| 南投县| 祁东县| 南部县| 朔州市| 巫山县| 乐亭县| 玉林市| 类乌齐县| 成武县| 金溪县| 黄陵县| 曲周县| 沙河市| 射阳县| 贵州省| 于田县| 磴口县| 亚东县| 子洲县| 图木舒克市|