找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Topology a Filippo Callegaro,Frederick Cohen,Mario Salvetti Book 2016 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 銀河
51#
發(fā)表于 2025-3-30 10:18:42 | 只看該作者
Bruno Grancelli,Antonio M. Chiesieric values of its variables . and .. The . variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer’s algebraic proof. The . variable, associated with the dual Garside structure of the braid group, has received less attention. In this a
52#
發(fā)表于 2025-3-30 12:58:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:36:47 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
54#
發(fā)表于 2025-3-30 22:57:58 | 只看該作者
Filippo Callegaro,Frederick Cohen,Mario SalvettiHigh-level contributions by leading experts in the field.Fully refereed original papers.Provides an ideal resource for researchers seeking an overview of current trends
55#
發(fā)表于 2025-3-31 01:24:44 | 只看該作者
56#
發(fā)表于 2025-3-31 08:01:50 | 只看該作者
57#
發(fā)表于 2025-3-31 09:10:32 | 只看該作者
58#
發(fā)表于 2025-3-31 17:16:39 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱州市| 富裕县| 岫岩| 五华县| 马公市| 太康县| 铅山县| 锦屏县| 土默特右旗| 囊谦县| 寻乌县| 安陆市| 香港 | 宜君县| 阆中市| 富平县| 扎囊县| 巴彦县| 麻江县| 克拉玛依市| 嘉黎县| 香格里拉县| 上杭县| 姜堰市| 郸城县| 庐江县| 珠海市| 巴南区| 金堂县| 通城县| 青铜峡市| 鹿邑县| 昆山市| 璧山县| 黔江区| 团风县| 邳州市| 讷河市| 仁怀市| 和平区| 合川市|