找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Topology a Filippo Callegaro,Frederick Cohen,Mario Salvetti Book 2016 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 11:06:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:05:26 | 只看該作者
Local Asymptotic Euler-Maclaurin Expansion for Riemann Sums over a Semi-Rational Polyhedron,erator for the face . can be chosen (in a unique way) to involve only normal derivatives to ...Our formulas are valid for a semi-rational polyhedron and a real sampling parameter ., if we allow for . coefficients, instead of just constant ones.
13#
發(fā)表于 2025-3-23 18:08:04 | 只看該作者
Cryptomorphisms for Abstract Rigidity Matroids,ract rigidity matroids by means of certain “prescribed substructures”. We then prove a recursive version of this conjecture. (This is an extended version of the second author’s bachelor thesis at University of Bremen.).
14#
發(fā)表于 2025-3-23 23:32:35 | 只看該作者
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:05 | 只看該作者
Bruno Grancelli,Antonio M. Chiesinerate euclidean simplices. In our interpretation, braid group elements act by systematically reshaping (and relabeling) euclidean simplices. The reshapings associated to the simple elements in the dual Garside structure of the braid group are of an especially elementary type that we call relabeling and rescaling.
18#
發(fā)表于 2025-3-24 16:35:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:28:33 | 只看該作者
20#
發(fā)表于 2025-3-25 02:06:51 | 只看該作者
Induced and Complete Multinets,, inducibility and completeness, and the relationship between them are explored with several examples presented. Specializations of multinets plays an integral role in our findings. The main result is the classification of complete 3-nets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社旗县| 黎城县| 海淀区| 永州市| 巴中市| 咸丰县| 祁门县| 合川市| 常德市| 道孚县| 诏安县| 友谊县| 迁西县| 成武县| 墨竹工卡县| 屏东县| 红河县| 阿巴嘎旗| 大理市| 林周县| 丹凤县| 安庆市| 合阳县| 泽库县| 平江县| 新宁县| 陵川县| 兰州市| 商洛市| 阳新县| 温宿县| 富民县| 锦屏县| 思南县| 巫溪县| 南川市| 岳阳县| 喀喇| 新泰市| 宿松县| 永胜县|