找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Combinator A. Bjorner,F. Cohen,M. Salvetti Conference proceedings 2012 Scuola Normale Superiore Pisa 2012 a

[復(fù)制鏈接]
樓主: 婉言
31#
發(fā)表于 2025-3-26 22:33:32 | 只看該作者
32#
發(fā)表于 2025-3-27 01:54:26 | 只看該作者
33#
發(fā)表于 2025-3-27 05:42:50 | 只看該作者
Helen Frommer,Emma Kn?dler,Niklas Sauterrms of global quotient orbifold pencils..Below we consider the case of plane curve complements. In particular, an infinite family of curves exhibiting characters of any torsion and depth 3 will be discussed. Also, in the context of line arrangements, it will be shown how geometric tools, such as the
34#
發(fā)表于 2025-3-27 10:48:03 | 只看該作者
35#
發(fā)表于 2025-3-27 16:44:10 | 只看該作者
36#
發(fā)表于 2025-3-27 18:01:05 | 只看該作者
https://doi.org/10.1007/978-3-540-88273-2of hyperplane arrangement Milnor fibers, we obtain a new result on the possible weights. For line arrangements, we prove in a new way the fact due to Budur and Saito that the spectrum is determined by the weak combinatorial data, and show that such a result fails for the Hodge-Deligne polynomials. I
37#
發(fā)表于 2025-3-27 23:13:53 | 只看該作者
Ecotoxicity of Transformation Products→ ? We show that the contravariant bilinear form of the corresponding weighted central arrangement induces a well-defined form on the space of singular vectors of the projectivization. If ∑.a. = 0, this form is naturally isomorphic to the restriction to the space of singular vectors of the contravar
38#
發(fā)表于 2025-3-28 04:58:55 | 只看該作者
Lawrence P. Wackett,Lynda B. M. Ellis). It is also an opportunity to prove three new results concerning these questions: (1) if all free of infinity Artin-Tits groups are torsion free, then all Artin-Tits groups will be torsion free; (2) If all free of infinity irreducible non-spherical type Artin-Tits groups have a trivial center then
39#
發(fā)表于 2025-3-28 06:47:16 | 只看該作者
The Handbook of Environmental ChemistryRains which relates cohomology of real De Concini-Procesi models to poset homology, we give formulas for the Betti numbers of the real toric variety, and the symmetric group representations on the rational cohomologies. We also show that the rational cohomology ring is not generated in degree 1.
40#
發(fā)表于 2025-3-28 13:16:49 | 只看該作者
Marion Peyinghaus,Regina Zeitnersume that . is disjoint from the Coxeter arrangement . = .. of . In this paper, we show that the W-orbits of the set of chambers of . are in one-to-one correspondence with the chambers of C = . ∪ . which are contained in an arbitrarily fixed chamber of .. From this fact, we find that the number of W
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 14:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 龙山县| 永吉县| 常州市| 雅江县| 霍邱县| 六安市| 克什克腾旗| 乡城县| 建昌县| 洱源县| 仙游县| 宜章县| 垫江县| 岑巩县| 永清县| 樟树市| 麻城市| 措勤县| 大化| 虹口区| 龙川县| 溧水县| 宿松县| 凤山市| 和顺县| 苍南县| 衡东县| 鸡西市| 阿拉善左旗| 广宗县| 东港市| 灵石县| 玉树县| 凤翔县| 滦南县| 娱乐| 岐山县| 吕梁市| 永宁县| 从化市|