找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Combinator A. Bjorner,F. Cohen,M. Salvetti Conference proceedings 2012 Scuola Normale Superiore Pisa 2012 a

[復(fù)制鏈接]
查看: 35652|回復(fù): 62
樓主
發(fā)表于 2025-3-21 17:49:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Configuration Spaces
副標(biāo)題Geometry, Combinator
編輯A. Bjorner,F. Cohen,M. Salvetti
視頻videohttp://file.papertrans.cn/236/235298/235298.mp4
概述High-level contributions.Covers many topics important for several different theories.Of interest to a wide variety of mathematicians
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Configuration Spaces; Geometry, Combinator A. Bjorner,F. Cohen,M. Salvetti Conference proceedings 2012 Scuola Normale Superiore Pisa 2012 a
描述These proceedings contain the contributions of some of the participants in the "intensive research period" held at the De Giorgi Research Center in Pisa, during the period May-June 2010. The central theme of this research period was the study of configuration spaces from various points of view. This topic originated from the intersection of several classical theories: Braid groups and related topics, configurations of vectors (of great importance in Lie theory and representation theory), arrangements of hyperplanes and of subspaces, combinatorics, singularity theory. Recently, however, configuration spaces have acquired independent interest and indeed the contributions in this volume go far beyond the above subjects, making it attractive to a large audience of mathematicians.
出版日期Conference proceedings 2012
關(guān)鍵詞arrangements of hyperplanes; braid groups; configuration of vectors; configuration spaces; combinatorics
版次1
doihttps://doi.org/10.1007/978-88-7642-431-1
isbn_softcover978-88-7642-430-4
isbn_ebook978-88-7642-431-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore Pisa 2012
The information of publication is updating

書目名稱Configuration Spaces影響因子(影響力)




書目名稱Configuration Spaces影響因子(影響力)學(xué)科排名




書目名稱Configuration Spaces網(wǎng)絡(luò)公開度




書目名稱Configuration Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Configuration Spaces被引頻次




書目名稱Configuration Spaces被引頻次學(xué)科排名




書目名稱Configuration Spaces年度引用




書目名稱Configuration Spaces年度引用學(xué)科排名




書目名稱Configuration Spaces讀者反饋




書目名稱Configuration Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:54 | 只看該作者
Characters of fundamental groups of curve complements and orbifold pencils,rms of global quotient orbifold pencils..Below we consider the case of plane curve complements. In particular, an infinite family of curves exhibiting characters of any torsion and depth 3 will be discussed. Also, in the context of line arrangements, it will be shown how geometric tools, such as the
板凳
發(fā)表于 2025-3-22 02:36:05 | 只看該作者
Analytic continuation of a parametric polytope and wall-crossing,ncides with the parallel transport of polytopes in a mirage introduced by Varchenko. We determine the set-theoretic variation when crossing a wall in the parameter space, and we relate this variation to Paradan’s wall-crossing formulas for integrals and discrete sums. As another application, we refi
地板
發(fā)表于 2025-3-22 04:47:32 | 只看該作者
Embeddings of braid groups into mapping class groups and their homology,duce the trivial map in stable homology in the orientable case, but not so in the non-orientable case. We show that these embeddings are non-geometric in the sense that the standard generators of the braid group are not mapped to Dehn twists.
5#
發(fā)表于 2025-3-22 12:07:24 | 只看該作者
6#
發(fā)表于 2025-3-22 16:45:54 | 只看該作者
The contravariant form on singular vectors of a projective arrangement,→ ? We show that the contravariant bilinear form of the corresponding weighted central arrangement induces a well-defined form on the space of singular vectors of the projectivization. If ∑.a. = 0, this form is naturally isomorphic to the restriction to the space of singular vectors of the contravar
7#
發(fā)表于 2025-3-22 17:19:57 | 只看該作者
Basic questions on Artin-Tits groups,). It is also an opportunity to prove three new results concerning these questions: (1) if all free of infinity Artin-Tits groups are torsion free, then all Artin-Tits groups will be torsion free; (2) If all free of infinity irreducible non-spherical type Artin-Tits groups have a trivial center then
8#
發(fā)表于 2025-3-22 23:18:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:29:23 | 只看該作者
Arrangements stable under the Coxeter groups,sume that . is disjoint from the Coxeter arrangement . = .. of . In this paper, we show that the W-orbits of the set of chambers of . are in one-to-one correspondence with the chambers of C = . ∪ . which are contained in an arbitrarily fixed chamber of .. From this fact, we find that the number of W
10#
發(fā)表于 2025-3-23 07:37:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇州县| 乐陵市| 抚宁县| 双城市| 青龙| 城口县| 江津市| 斗六市| 南溪县| 昌黎县| 弋阳县| 大丰市| 呼和浩特市| 临沭县| 中山市| 大同县| 精河县| 邯郸县| 瑞丽市| 湖南省| 郸城县| 德化县| 通辽市| 汕头市| 威远县| 建平县| 天等县| 金华市| 河北省| 信宜市| 乌兰察布市| 商河县| 和田市| 逊克县| 当涂县| 湟中县| 博乐市| 河北省| 西峡县| 井陉县| 中牟县|