找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conference on the Numerical Solution of Differential Equations; Held in Dundee/Scotl J. Li. Morris Conference proceedings 1969 Springer-Ver

[復(fù)制鏈接]
查看: 11195|回復(fù): 57
樓主
發(fā)表于 2025-3-21 20:04:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Conference on the Numerical Solution of Differential Equations
副標(biāo)題Held in Dundee/Scotl
編輯J. Li. Morris
視頻videohttp://file.papertrans.cn/236/235282/235282.mp4
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Conference on the Numerical Solution of Differential Equations; Held in Dundee/Scotl J. Li. Morris Conference proceedings 1969 Springer-Ver
出版日期Conference proceedings 1969
關(guān)鍵詞Boundary value problem; Differential Equations; Differentialgleichung; Numerical integration; equation; o
版次1
doihttps://doi.org/10.1007/BFb0060012
isbn_softcover978-3-540-04628-8
isbn_ebook978-3-540-36158-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1969
The information of publication is updating

書(shū)目名稱Conference on the Numerical Solution of Differential Equations影響因子(影響力)




書(shū)目名稱Conference on the Numerical Solution of Differential Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱Conference on the Numerical Solution of Differential Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Conference on the Numerical Solution of Differential Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Conference on the Numerical Solution of Differential Equations被引頻次




書(shū)目名稱Conference on the Numerical Solution of Differential Equations被引頻次學(xué)科排名




書(shū)目名稱Conference on the Numerical Solution of Differential Equations年度引用




書(shū)目名稱Conference on the Numerical Solution of Differential Equations年度引用學(xué)科排名




書(shū)目名稱Conference on the Numerical Solution of Differential Equations讀者反饋




書(shū)目名稱Conference on the Numerical Solution of Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:26 | 只看該作者
Alternating direction methods for parabolic equations in two and three space dimensions with mixed se, and three tridiagonal sets of equations in the three space dimensional case. Several theorems are stated showing the methods to be unconditionally stable for certain ranges of an auxiliary parameter. Reference is made to other authors and numerical results are mentioned.
板凳
發(fā)表于 2025-3-22 03:24:53 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:07 | 只看該作者
5#
發(fā)表于 2025-3-22 10:26:00 | 只看該作者
6#
發(fā)表于 2025-3-22 14:47:04 | 只看該作者
Transducers for Linear and Rotary Movement,The truncation error in single step methods for ordinary differential equations may be bounded by terms which represent quadrature remainders. The remainders may be determined by applying Peano‘s theorem and this treatment suggests a variety of methods based on quadrature rules. In some cases the error bounds improve on classical results.
7#
發(fā)表于 2025-3-22 19:40:26 | 只看該作者
L. A. Dykstra,A. J. Bertalmio,J. H. WoodsIn this paper optimal order, k-step methods with one nonstep point for the numerical solution of y‘ = f(x,y) y(a) = n, introduced by Gragg and Stetter (1) are extended to an arbitrary number s of nonstep points. These methods have order 2k + 2s, are proved stable for k ≤ 8, s ≥ 2, and not stable for large k.
8#
發(fā)表于 2025-3-22 23:38:25 | 只看該作者
Series of the Centro De Estudios CientíficosThis paper gives new finite difference formulae which are suitable for the numerical integration of stiff systems of ordinary differential equations. The method is exact if the problem is of the type y. = Py + Q(x) where P is a constant and Q(x) a polynomial of degree q. When P = 0 the method is identical with the Adams-Bashforth formulae.
9#
發(fā)表于 2025-3-23 03:50:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:02:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水城县| 乐平市| 兰溪市| 蒙自县| 沧州市| 杨浦区| 双柏县| 永泰县| 甘谷县| 巍山| 吴堡县| 武定县| 巩义市| 定边县| 佳木斯市| 闽侯县| 建瓯市| 永济市| 长阳| 缙云县| 图片| 开阳县| 山西省| 永仁县| 锡林浩特市| 巴青县| 梅州市| 阿坝县| 曲沃县| 永善县| 清徐县| 虹口区| 南昌市| 华蓥市| 兴业县| 秦安县| 武定县| 乃东县| 南皮县| 耒阳市| 南岸区|