找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditionally Specified Distributions; Barry C. Arnold,Enrique Castillo,José-Mariá Sarabi Conference proceedings 1992 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: finesse
41#
發(fā)表于 2025-3-28 17:06:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:52:31 | 只看該作者
43#
發(fā)表于 2025-3-29 01:43:24 | 只看該作者
Distributions with normal conditionals,l conditional densities are univariate normal. In addition, the regression functions are linear and the conditioned variances do not depend on the value of the conditioned variable. Moreover the contours of the joint density are ellipses. Individually none of the above properties is restrictive enou
44#
發(fā)表于 2025-3-29 03:46:56 | 只看該作者
Conditionals in Exponential Families,on in Chapter 2, it is natural to seek out more general results regarding distributions whose conditionals are posited to be members of quite general exponential families. Indeed the discussion leading up to Theorem 2.4, suggests that things should work well when conditionals are from exponential fa
45#
發(fā)表于 2025-3-29 08:11:57 | 只看該作者
Other conditionally specified families,els not fitting into the exponential family paradigm. No general theorem analogous to Theorem 4.2.1 is available and results are obtained on a case by case basis. The key tools are, of course, Theorems 2.3 and 2.4 which permit us to solve the functional equations characterizing many conditionally sp
46#
發(fā)表于 2025-3-29 13:05:51 | 只看該作者
Characterizations involving conditional moments, families. Two kinds of surprising results have been encountered. On the one hand, the class of conditionally specified joint densities might be surprisingly constrained. For example, exponential conditionals models turn out to be always negatively correlated. In some sense, then, specifying the for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郑州市| 长海县| 庆云县| 东乡族自治县| 澄迈县| 营山县| 琼结县| 洪江市| 壶关县| 务川| 湛江市| 永嘉县| 福清市| 深水埗区| 贵德县| 监利县| 峨山| 崇义县| 贵州省| 洪泽县| 日喀则市| 遵义市| 夏邑县| 桂平市| 湘西| 邳州市| 荆门市| 利川市| 宁南县| 昆山市| 青冈县| 五莲县| 昭平县| 阳江市| 湘乡市| 云浮市| 兖州市| 深州市| 满洲里市| 松溪县| 肇庆市|