找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditional and Typed Rewriting Systems; 4th International Wo Nachum Dershowitz,Naomi Lindenstrauss Conference proceedings 1995 Springer-Ve

[復(fù)制鏈接]
樓主: Retina
41#
發(fā)表于 2025-3-28 18:00:09 | 只看該作者
A calculus for rippling,ng with conventional term rewriting. Such a combination offers the flexibility and uniformity of conventional rewriting with the highly goal-directed nature of rippling. The calculus we present here is implemented and has been integrated into the Edinburgh CLAM proof-planning system.
42#
發(fā)表于 2025-3-28 21:13:51 | 只看該作者
Well-foundedness of term orderings,e . and . which can not be dealt with by Kruskal‘s theorem..For finite alphabets we present completeness results, i. e., a term rewriting system terminates if and only if it is compatible with an order satisfying the criterion. For infinite alphabets the same completeness results hold for a slightly different criterion.
43#
發(fā)表于 2025-3-29 00:57:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:14:06 | 只看該作者
45#
發(fā)表于 2025-3-29 10:28:17 | 只看該作者
The complexity of testing ground reducibility for linear word rewriting systems with variables,plete if both . and . are restricted to be linear. The proof is based on the construction of a deterministic finite automaton for the language of words reducible by .. The construction generalizes the well-known Aho-Corasick automaton for string matching against a set of keywords.
46#
發(fā)表于 2025-3-29 12:37:04 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:12 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:13 | 只看該作者
49#
發(fā)表于 2025-3-30 00:56:07 | 只看該作者
https://doi.org/10.1007/11732488heorem and we can use various proof-theoretic techniques such as Kleene‘s permutability theorem. The coherence is proved by showing that the reconstruction of derivations for the given class of arrows is deterministic and unique up to equivalence.
50#
發(fā)表于 2025-3-30 07:06:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 东宁县| 宜兴市| 江北区| 永新县| 阆中市| 天门市| 建湖县| 化隆| 毕节市| 临沂市| 扎赉特旗| 砚山县| 瑞丽市| 灌云县| 夹江县| 怀来县| 夏邑县| 锦州市| 安福县| 开江县| 乌兰浩特市| 西林县| 灵寿县| 海门市| 明光市| 太和县| 姚安县| 南阳市| 柳江县| 阆中市| 绵阳市| 兰坪| 拉孜县| 高尔夫| 娄烦县| 石渠县| 会东县| 尼木县| 老河口市| 民县|