找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditional and Typed Rewriting Systems; 4th International Wo Nachum Dershowitz,Naomi Lindenstrauss Conference proceedings 1995 Springer-Ve

[復(fù)制鏈接]
樓主: Retina
41#
發(fā)表于 2025-3-28 18:00:09 | 只看該作者
A calculus for rippling,ng with conventional term rewriting. Such a combination offers the flexibility and uniformity of conventional rewriting with the highly goal-directed nature of rippling. The calculus we present here is implemented and has been integrated into the Edinburgh CLAM proof-planning system.
42#
發(fā)表于 2025-3-28 21:13:51 | 只看該作者
Well-foundedness of term orderings,e . and . which can not be dealt with by Kruskal‘s theorem..For finite alphabets we present completeness results, i. e., a term rewriting system terminates if and only if it is compatible with an order satisfying the criterion. For infinite alphabets the same completeness results hold for a slightly different criterion.
43#
發(fā)表于 2025-3-29 00:57:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:14:06 | 只看該作者
45#
發(fā)表于 2025-3-29 10:28:17 | 只看該作者
The complexity of testing ground reducibility for linear word rewriting systems with variables,plete if both . and . are restricted to be linear. The proof is based on the construction of a deterministic finite automaton for the language of words reducible by .. The construction generalizes the well-known Aho-Corasick automaton for string matching against a set of keywords.
46#
發(fā)表于 2025-3-29 12:37:04 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:12 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:13 | 只看該作者
49#
發(fā)表于 2025-3-30 00:56:07 | 只看該作者
https://doi.org/10.1007/11732488heorem and we can use various proof-theoretic techniques such as Kleene‘s permutability theorem. The coherence is proved by showing that the reconstruction of derivations for the given class of arrows is deterministic and unique up to equivalence.
50#
發(fā)表于 2025-3-30 07:06:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 18:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
城口县| 红原县| 元氏县| 隆安县| 原平市| 辽源市| 广州市| 汝州市| 色达县| 天柱县| 鱼台县| 来宾市| 宝清县| 台湾省| 噶尔县| 建阳市| 武山县| 伊川县| 四会市| 南汇区| 河源市| 轮台县| 北票市| 安顺市| 托克逊县| 收藏| 尚志市| 来安县| 台江县| 洛隆县| 高雄市| 古浪县| 固安县| 建德市| 海宁市| 固始县| 天峨县| 凤凰县| 名山县| 闻喜县| 托克托县|