找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditional Specification of Statistical Models; Barry C. Arnold,Enrique Castillo,José María Sarabi Book 1999 Springer Science+Business Me

[復(fù)制鏈接]
樓主: HARDY
11#
發(fā)表于 2025-3-23 11:24:08 | 只看該作者
12#
發(fā)表于 2025-3-23 15:36:18 | 只看該作者
Bayesian Analysis Using Conditionally Specified Models,tc. Much early Bayesian work was focussed on so-called conjugate priors. Such priors are convenient but lack flexibility for modeling informed prior belief. The classical scenario, in which most of the issues are already clearly visible, involves a sample from a normal distribution with unknown mean and variance.
13#
發(fā)表于 2025-3-23 18:05:33 | 只看該作者
https://doi.org/10.1007/b97592Statistica; Statistical Models; addition; boundary element method; development; distribution; equation; fun
14#
發(fā)表于 2025-3-23 23:06:03 | 只看該作者
978-1-4757-7260-9Springer Science+Business Media New York 1999
15#
發(fā)表于 2025-3-24 03:08:55 | 只看該作者
16#
發(fā)表于 2025-3-24 10:06:37 | 只看該作者
https://doi.org/10.1007/978-3-642-01004-0 discrepancy between incompatible conditionals. In addition, they suggests alternative ways in which most nearly compatible distributions can be defined in incompatible cases. A related concept of ∈-compatibility arises naturally in the discussion of incompatible cases.
17#
發(fā)表于 2025-3-24 12:40:22 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:43 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:49 | 只看該作者
https://doi.org/10.1007/978-3-642-16007-3els not fitting into the exponential family paradigm. No general theorem analogous to Theorem 4.1 is available and results are obtained on a case by case basis. The key tools are of course Theorems 1.3 and 1.4 which permit us to solve the functional equations characterizing many conditionally specif
20#
發(fā)表于 2025-3-25 02:08:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝南县| 云阳县| 灌阳县| 连云港市| 松潘县| 灵寿县| 临夏市| 玛多县| 两当县| 漾濞| 乐陵市| 化德县| 佛山市| 棋牌| 广东省| 静乐县| 汉寿县| 阿拉善盟| 山丹县| 磐石市| 玉林市| 泸水县| 客服| 长兴县| 洛阳市| 化州市| 东乡族自治县| 平江县| 共和县| 湾仔区| 长宁县| 福贡县| 修文县| 邛崃市| 东山县| 和龙市| 隆化县| 灯塔市| 赤峰市| 镇沅| 湾仔区|