找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: Lactase
11#
發(fā)表于 2025-3-23 11:05:37 | 只看該作者
Coherency and area identification,ies of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remaining part of the chapter deals with various bounds that are valid in the presence of logarithmic Sobolev inequalities.
12#
發(fā)表于 2025-3-23 14:55:02 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:04:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:31 | 只看該作者
Logarithmic Sobolev Inequalitiesof functions, not necessarily under the Lipschitz hypothesis. To introduce this class of analytic inequalities, first we briefly mention basic properties of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remai
16#
發(fā)表于 2025-3-24 09:36:00 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:41 | 只看該作者
Second Order Spherical Concentrationith respect to growing dimension . in comparison with deviations that are valid for the entire class of Lipschitz functions. These conditions involve derivatives of . of the second order, which may be considered both in the spherical and Euclidean setup.
18#
發(fā)表于 2025-3-24 16:29:28 | 只看該作者
https://doi.org/10.1007/978-3-030-01210-6This definition is frequently used in Convex Geometry, especially for random vectors which are uniformly distributed over a convex body (in which case the body is called isotropic, cf. [144]).
19#
發(fā)表于 2025-3-24 22:44:56 | 只看該作者
Slow coherency and weak connections,In some problems/Sobolev-type inequalities, it makes sense to slightly modify the notion of the generalized modulus of gradient.
20#
發(fā)表于 2025-3-25 00:59:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正蓝旗| 漠河县| 自贡市| 康保县| 都安| 建水县| 四会市| 东阿县| 宽甸| SHOW| 邛崃市| 铜陵市| 永平县| 云霄县| 克什克腾旗| 正蓝旗| 萍乡市| 潼关县| 新竹县| 金山区| 安仁县| 礼泉县| 浪卡子县| 克山县| 阆中市| 鹤庆县| 潞西市| 邵阳市| 天等县| 沐川县| 武汉市| 营山县| 福建省| 通山县| 保靖县| 登封市| 榕江县| 重庆市| 越西县| 常德市| 宝应县|