找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:33:42 | 只看該作者
Towards a New Shell Model FormalismWe review results concerning optimal Sobolev inequalities in Riemannian manifolds and recent existence/non existence/uniqueness results for Sobolev extremals in the hyperbolic space .. We alsodi scuss exponential integrability in ., the hyperbolic plane, and related topics.
12#
發(fā)表于 2025-3-23 16:25:37 | 只看該作者
The Statesman‘s Yearbook 1998-99We prove a general finite-dimensional reduction theorem for critical equations of scalar curvature type. Solutions of these equations are constructed as a sum of peaks. The use of this theorem reduces the proof of existence of multi-peak solutions to some test-functions estimates and to the analysis of the interactions of peaks.
13#
發(fā)表于 2025-3-23 18:43:57 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:02 | 只看該作者
Blow-up Solutions for Linear Perturbations of the Yamabe Equation,For a smooth, compact Riemannian manifold (M,g) of dimension . we are interested in the critical equation . where . is the Laplace–Beltrami operator, S. is the scalar curvature of . and ε is a small parameter.
15#
發(fā)表于 2025-3-24 02:33:50 | 只看該作者
16#
發(fā)表于 2025-3-24 10:11:27 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:02 | 只看該作者
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
18#
發(fā)表于 2025-3-24 16:42:00 | 只看該作者
,A Note on Non-radial Sign-changing Solutions for the Schr?dinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ? ? 0. The proof is based on the Lyapunov–Schmidt reduction.
19#
發(fā)表于 2025-3-24 21:51:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:38 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/c/image/234851.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云霄县| 永新县| 大安市| 子长县| 自贡市| 茂名市| 开封市| 宜兴市| 普陀区| 新巴尔虎左旗| 扬中市| 洮南市| 白玉县| 绩溪县| 揭阳市| 铜山县| 冷水江市| 星子县| 定兴县| 沙坪坝区| 新兴县| 正定县| 聂荣县| 蒙城县| 大厂| 内黄县| 家居| 乐昌市| 广西| 姜堰市| 河池市| 军事| 阜新| 绍兴县| 红河县| 循化| 邮箱| 河池市| 邓州市| 新乡县| 松阳县|