找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing with Foresight and Industry; 15th Conference on C Florin Manea,Barnaby Martin,Giuseppe Primiero Conference proceedings 2019 Sprin

[復制鏈接]
樓主: squamous-cell
11#
發(fā)表于 2025-3-23 11:33:36 | 只看該作者
https://doi.org/10.1007/b139077lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
12#
發(fā)表于 2025-3-23 17:40:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:31 | 只看該作者
Uniform Relativization,lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
14#
發(fā)表于 2025-3-23 23:30:01 | 只看該作者
15#
發(fā)表于 2025-3-24 02:39:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:18 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:37:13 | 只看該作者
https://doi.org/10.1007/BFb0034453hese spectra may be characterized by the ability to enumerate an arbitrary . set. This is the first proof that a computable field can fail to have a computable copy with a computable transcendence basis.
20#
發(fā)表于 2025-3-25 01:47:30 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 22:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
商丘市| 临潭县| 延安市| 临沂市| 乐山市| 洛浦县| 大英县| 定襄县| 江华| 房山区| 丁青县| 涿州市| 长寿区| 嘉定区| 济宁市| 河东区| 临颍县| 铜山县| 澄迈县| 峨山| 开原市| 班戈县| 定日县| 会同县| 新乡县| 呼玛县| 库尔勒市| 南城县| 平塘县| 阿克| 嘉祥县| 楚雄市| 唐山市| 井冈山市| 哈巴河县| 富阳市| 江陵县| 九龙坡区| 屏东县| 房产| 托克托县|