找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing with Foresight and Industry; 15th Conference on C Florin Manea,Barnaby Martin,Giuseppe Primiero Conference proceedings 2019 Sprin

[復(fù)制鏈接]
樓主: squamous-cell
11#
發(fā)表于 2025-3-23 11:33:36 | 只看該作者
https://doi.org/10.1007/b139077lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
12#
發(fā)表于 2025-3-23 17:40:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:31 | 只看該作者
Uniform Relativization,lgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.
14#
發(fā)表于 2025-3-23 23:30:01 | 只看該作者
15#
發(fā)表于 2025-3-24 02:39:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:18 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:37:13 | 只看該作者
https://doi.org/10.1007/BFb0034453hese spectra may be characterized by the ability to enumerate an arbitrary . set. This is the first proof that a computable field can fail to have a computable copy with a computable transcendence basis.
20#
發(fā)表于 2025-3-25 01:47:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 襄城县| 彭山县| 西藏| 双峰县| 凌海市| 南通市| 株洲市| 花莲县| 林甸县| 翼城县| 阳春市| 屏东市| 峡江县| 仙游县| 泌阳县| 华容县| 连南| 海兴县| 海丰县| 吉安市| 托克托县| 开鲁县| 罗平县| 冀州市| 揭西县| 乌审旗| 泰和县| 安宁市| 焦作市| 巴马| 繁峙县| 宜城市| 巴青县| 紫云| 河北区| 东丰县| 阿鲁科尔沁旗| 鞍山市| 塔河县| 玛纳斯县|