找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing the Continuous Discretely; Integer-Point Enumer Matthias Beck,Sinai Robins Textbook 2015Latest edition Matthias Beck and Sinai Ro

[復(fù)制鏈接]
樓主: External-Otitis
11#
發(fā)表于 2025-3-23 11:52:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:16 | 只看該作者
https://doi.org/10.1007/978-94-017-3530-8ion .?≤?4. In this chapter, we focus on the computational-complexity issues that arise when we try to compute Dedekind sums explicitly. In many ways, the Dedekind sums extend the notion of the greatest common divisor of two integers.
13#
發(fā)表于 2025-3-23 20:14:10 | 只看該作者
Dedekind Sums, the Building Blocks of Lattice-Point Enumerationion .?≤?4. In this chapter, we focus on the computational-complexity issues that arise when we try to compute Dedekind sums explicitly. In many ways, the Dedekind sums extend the notion of the greatest common divisor of two integers.
14#
發(fā)表于 2025-3-23 22:53:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:57 | 只看該作者
16#
發(fā)表于 2025-3-24 06:40:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:12 | 只看該作者
18#
發(fā)表于 2025-3-24 18:08:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:12 | 只看該作者
Akitaka Dohtani,Toshio Inaba,Hiroshi Osakarational function, we introduced the name .. for its numerator: . Our goal in this chapter is to prove several decomposition formulas for . based on triangulations of .. As we will see, these decompositions will involve both arithmetic data from the simplices of the triangulation and combinatorial data from the face structure of the triangulation.
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
https://doi.org/10.1007/978-94-017-3536-0 transforms a continuous integral into a discrete sum of residues. Using the ..., we show here that Pick’s theorem is a discrete version of Green’s theorem in the plane. As a bonus, we also obtain an integral formula for the discrepancy between the area enclosed by a general curve . and the number of integer points contained in?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 沛县| 大埔区| 开封县| 马山县| 舞钢市| 济南市| 昌吉市| 万安县| 木兰县| 荣成市| 探索| 泸溪县| 河东区| 文登市| 葵青区| 文成县| 鹿邑县| 军事| 长春市| 台州市| 仙居县| 饶阳县| 灌云县| 温州市| 桦南县| 滦南县| 阳曲县| 板桥市| 伊宁市| 高台县| 崇信县| 张家界市| 册亨县| 翼城县| 肇州县| 巴彦淖尔市| 恩平市| 溆浦县| 南城县| 吴旗县|